Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 608(7923): 558-562, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948632

RESUMO

The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.


Assuntos
Mudança Climática , Fósforo , Floresta Úmida , Solo , Árvores , Clima Tropical , Aclimatação , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Sequestro de Carbono , Cátions/metabolismo , Cátions/farmacologia , Mudança Climática/estatística & dados numéricos , Modelos Biológicos , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Fósforo/metabolismo , Fósforo/farmacologia , Solo/química , Árvores/efeitos dos fármacos , Árvores/metabolismo , Incerteza
2.
Glob Chang Biol ; 29(17): 4861-4879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386918

RESUMO

For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions. Here, we use a machine learning approach to quantify the importance of environmental factors and apply it to generate spatial predictions of the species diversity of all trees (dbh ≥ 10 cm) and for very large trees (dbh ≥ 70 cm) using data from 243 forest plots (108,450 trees and 2832 species) distributed across different forest types and biogeographic regions of the Brazilian Amazon. The diversity of large trees and of all trees was significantly associated with three environmental factors, but in contrasting ways across regions and forest types. Environmental variables associated with disturbances, for example, the lightning flash rate and wind speed, as well as the fraction of photosynthetically active radiation, tend to govern the diversity of large trees. Upland rainforests in the Guiana Shield and Roraima regions had a high diversity of large trees. By contrast, variables associated with resources tend to govern tree diversity in general. Places such as the province of Imeri and the northern portion of the province of Madeira stand out for their high diversity of species in general. Climatic and topographic stability and functional adaptation mechanisms promote ideal conditions for species diversity. Finally, we mapped general patterns of tree species diversity in the Brazilian Amazon, which differ substantially depending on size class.


Assuntos
Aclimatação , Vento , Brasil , Floresta Úmida , Biodiversidade
3.
Glob Chang Biol ; 25(1): 39-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406962

RESUMO

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.


Assuntos
Biodiversidade , Mudança Climática , Florestas , Brasil , Dióxido de Carbono , Ecossistema , Estações do Ano , Árvores/classificação , Árvores/fisiologia , Clima Tropical , Água
4.
Nat Commun ; 15(1): 549, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263406

RESUMO

Temperature is a fundamental driver of species distribution and ecosystem functioning. Yet, our knowledge of the microclimatic conditions experienced by organisms inside tropical forests remains limited. This is because ecological studies often rely on coarse-gridded temperature estimates representing the conditions at 2 m height in an open-air environment (i.e., macroclimate). In this study, we present a high-resolution pantropical estimate of near-ground (15 cm above the surface) temperatures inside forests. We quantify diurnal and seasonal variability, thus revealing both spatial and temporal microclimate patterns. We find that on average, understory near-ground temperatures are 1.6 °C cooler than the open-air temperatures. The diurnal temperature range is on average 1.7 °C lower inside the forests, in comparison to open-air conditions. More importantly, we demonstrate a substantial spatial variability in the microclimate characteristics of tropical forests. This variability is regulated by a combination of large-scale climate conditions, vegetation structure and topography, and hence could not be captured by existing macroclimate grids. Our results thus contribute to quantifying the actual thermal ranges experienced by organisms inside tropical forests and provide new insights into how these limits may be affected by climate change and ecosystem disturbances.


Assuntos
Ecossistema , Florestas , Temperatura , Mudança Climática , Sistemas Computacionais
5.
Science ; 386(6717): 92-98, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39361744

RESUMO

Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes.


Assuntos
Ciclo do Carbono , Florestas , Características de História de Vida , Árvores , Carbono/metabolismo , Longevidade , Temperatura , Árvores/crescimento & desenvolvimento
6.
Nat Commun ; 14(1): 8129, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097604

RESUMO

Habitat fragmentation could potentially affect tree architecture and allometry. Here, we use ground surveys of terrestrial LiDAR in Central Amazonia to explore the influence of forest edge effects on tree architecture and allometry, as well as forest biomass, 40 years after fragmentation. We find that young trees colonising the forest fragments have thicker branches and architectural traits that optimise for light capture, which result in 50% more woody volume than their counterparts of similar stem size and height in the forest interior. However, we observe a disproportionately lower height in some large trees, leading to a 30% decline in their woody volume. Despite the substantial wood production of colonising trees, the lower height of some large trees has resulted in a net loss of 6.0 Mg ha-1 of aboveground biomass - representing 2.3% of the aboveground biomass of edge forests. Our findings indicate a strong influence of edge effects on tree architecture and allometry, and uncover an overlooked factor that likely exacerbates carbon losses in fragmented forests.


Assuntos
Florestas , Árvores , Biomassa , Ecossistema , Madeira , Clima Tropical
7.
Nat Commun ; 13(1): 917, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177619

RESUMO

Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia.


Assuntos
Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Brasil , Luz , Microclima , Estações do Ano , Solo/química , Água/química
8.
Nat Commun ; 11(1): 5515, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168823

RESUMO

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.


Assuntos
Ecologia , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Brasil , Dióxido de Carbono , Sequestro de Carbono , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Modelos de Riscos Proporcionais , Fatores de Risco , Clima Tropical
9.
Ecology ; 101(7): e03052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239762

RESUMO

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Assuntos
Florestas , Madeira , África , Brasil , Ecossistema , Clima Tropical
10.
Sci Total Environ ; 693: 133515, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377364

RESUMO

Recent investigations indicate a warming of Atlantic Ocean surface waters since 1980, probably influenced by anthropic actions, inducing rainfall intensification mainly during the rainy season and slight reductions during the dry season in the Amazon. Under these climate changes, trees in upland forests (terra firme) could benefit from the intensification of the hydrological cycle and could also be affected by the reduction of precipitation during the dry season. Results of dendrochronological analyses, spatial correlations and structural equation models, showed that Scleronema micranthum (Ducke) Ducke (Malvaceae) trees exposed in fragmented areas and to edge effects in Central Amazonian terra firme forest were more sensitive to the increase in the Atlantic Ocean surface temperature and consequent northward displacement of the Intertropical Convergence Zone, mainly during the dry season. Therefore, we proved that in altered and potentially more stressful environments such as edges of fragmented forests, recent anthropogenic climatic changes are exerting pressure on tree growth dynamics, inducing alterations in their performance and, consequently, in essential processes related to ecosystem services. Changes that could affect human well-being, highlighting the need for strategies that reduce edge areas expansion in Amazon forests and anthropic climate changes of the Anthropocene.


Assuntos
Mudança Climática , Malvaceae/crescimento & desenvolvimento , Floresta Úmida , Árvores/crescimento & desenvolvimento , Brasil , Chuva , Clima Tropical
11.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712699

RESUMO

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Assuntos
Ecossistema , Madeira , Florestas , Filogenia , Clima Tropical
12.
Sci Rep ; 7: 39102, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094794

RESUMO

Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.


Assuntos
Biodiversidade , Carbono/análise , Florestas , Plantas/química , Plantas/classificação , África , América , Ásia , Clima Tropical
14.
PLoS One ; 10(8): e0134521, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312996

RESUMO

Precise identification of plant species requires a high level of knowledge by taxonomists and presence of reproductive material. This represents a major limitation for those working with seedlings and juveniles, which differ morphologically from adults and do not bear reproductive structures. Near-infrared spectroscopy (FT-NIR) has previously been shown to be effective in species discrimination of adult plants, so if young and adults have a similar spectral signature, discriminant functions based on FT-NIR spectra of adults can be used to identify leaves from young plants. We tested this with a sample of 419 plants in 13 Amazonian species from the genera Protium and Crepidospermum (Burseraceae). We obtained 12 spectral readings per plant, from adaxial and abaxial surfaces of dried leaves, and compared the rate of correct predictions of species with discriminant functions for different combinations of readings. We showed that the best models for predicting species in early developmental stages are those containing spectral data from both young and adult plants (98% correct predictions of external samples), but even using only adult spectra it is still possible to attain good levels of identification of young. We obtained an average of 75% correct identifications of young plants by discriminant equations based only on adults, when the most informative wavelengths were selected. Most species were accurately predicted (75-100% correct identifications), and only three had poor predictions (27-60%). These results were obtained despite the fact that spectra of young individuals were distinct from those of adults when species were analyzed individually. We concluded that FT-NIR has a high potential in the identification of species even at different ontogenetic stages, and that young plants can be identified based on spectra of adults with reasonable confidence.


Assuntos
Classificação/métodos , Filogenia , Árvores/classificação , Brasil , Folhas de Planta , Especificidade da Espécie , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Árvores/crescimento & desenvolvimento
15.
Rev. adm. pública (Online) ; 54(2): 285-300, mar.-abr. 2020. tab
Artigo em Espanhol | LILACS | ID: biblio-1136952

RESUMO

Resumen Este trabajo examina el efecto conjunto de la democracia y libertad económica sobre la corrupción. Para ello, se utilizan las bases de datos de 160 países de los años 2010 - 2016, considerando varias fuentes de información para un conjunto de variables económicas, culturales, históricas e institucionales. Las pesquisas señalan que el efecto conjunto de los niveles de libertad económica y democracia es importante para combatir la corrupción. Por lo tanto, las políticas más eficaces para los países objeto de estudio, serán aquellas enfocadas al derecho fundamental que tienen los seres humanos para controlar el fruto de su trabajo, englobando de manera integral las libertades y derechos de producción, distribución o consumo de bienes y servicios.


Resumo Este trabalho examina o efeito conjunto exercido pela democracia e pela liberdade econômica sobre a corrupção. Para tal fim, foram utilizados os bancos de dados de 160 países entre os anos de 2010 a 2016, considerando diversas fontes de informação para um conjunto de variáveis econômicas, culturais, históricas e institucionais. As pesquisas indicam que o efeito conjunto dos níveis de liberdade econômica e democracia é importante para combater a corrupção. Portanto, as políticas mais eficazes para os países analisados serão aquelas concentradas no direito fundamental dos seres humanos de controlar o resultado de seu trabalho, incluindo, de forma abrangente, as liberdades e os direitos de produção, distribuição ou consumo de bens. e serviços.


Abstract This work examines the joint effect of democracy and economic freedom on corruption. The study used a database of 160 countries from 2010 - 2016, containing information for a set of economic, cultural, historical, and institutional variables. Several researches show that the joint effect of economic freedom levels and democracy are essential to fight corruption. Therefore, the most effective public policies for countries under study are those focused on the fundamental right of human beings to control satisfying outcomes of their jobs, which holistically encompasses the freedom and rights of production, distribution, or consumption of goods and services.


Assuntos
Trabalho , Democracia , Economia , Distribuição de Produtos , Liberdade , Corrupção
16.
Nat Commun ; 6: 6857, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25919449

RESUMO

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

17.
Sci Adv ; 1(10): e1500936, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702442

RESUMO

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

18.
Acta amaz ; Acta amaz;49(2): 97-104, abr. - jun. 2019. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1119148

RESUMO

Polyembryony is the differentiation and development of multiple embryos in a single seed. This characteristic can provide advantages, as more than one embryo is produced with the same amount of resources, and the probability of establishment of at least one seedling increases. However, sibling seedlings may also increase competition, affecting development and survival. In the present study, the possible advantages and disadvantages of polyembryony were analyzed in the initial establishment of seedlings of Carapa surinamensis (Meliaceae), a tree species that produces monoembryonic or polyembryonic seeds. In this regard, the development of single seedlings was compared with a pair of seedlings emerging from polyembryonic seeds. We compared the development of seedlings attached to or detached from each other and to the seed resources. We observed two levels of competition: (a) for the seed reserves during germination and initial development, as multiple embryos of C. surinamensis share the same reserves, and (b) for external factors, mostly space for root and shoot development, and also for light. Reducing the competition for external factors by separating the siblings was not enough to reduce the effects of competition for seed reserves in the first six months of development. Nevertheless, viable seedlings were produced in all treatments. Thus, depending on sprout management in the nursery, the number of seedlings per seed can be significantly increased by detaching the seedlings, or more vigorous seedlings can be obtained when only one seedling is maintained.(AU)


Poliembrionia é a diferenciação e o desenvolvimento de múltiplos embriões em uma única semente. Esta característica pode proporcionar diversas vantagens, como aumentar o número de embriões produzidos com a mesma quantidade de recursos, e aumentar a probabilidade de estabelecimento de pelo menos uma plântula de uma única semente. Por outro lado, a competição entre plântulas pode aumentar, afetando seu desenvolvimento e sobrevivência. Neste estudo, foram analisadas as possíveis vantagens e desvantagens da poliembrionia em sementes de andiroba, Carapa surinamensis (Meliaceae), uma espécie arbórea que produz sementes monoembriônicas ou poliembriônicas. Comparamos o desenvolvimento de plântulas únicas com o de pares de plântulas provenientes de sementes poliembriônicas. As plântulas foram mantidas unidas ou separadas entre si e ligadas à ou destacadas da semente. Os resultados revelaram dois níveis de competição: (a) pelas reservas da semente durante a germinação e desenvolvimento inicial da plântula, quando embriões múltiplos de C. surinamensis compartilham as mesmas reservas, e (b) por fatores externos, principalmente espaço para o desenvolvimento da raiz e da parte aérea, e luz. A redução da competição por fatores externos, através da separação das plântulas, não foi suficiente para reduzir os efeitos da competição pelas reservas das sementes nos primeiros seis meses de desenvolvimento. Apesar disso, plântulas viáveis foram produzidas em todos os tratamentos. Assim, dependendo do manejo dos brotos em viveiro, o número de plântulas produzidas pode ser aumentado significativamente por meio da separação entre plântulas, ou o vigor das plântulas pode ser incrementado através de sua manutenção individualizada.(AU)


Assuntos
Sementes/embriologia , Meliaceae/embriologia , Plântula/crescimento & desenvolvimento
19.
Conserv Biol ; 20(3): 853-60, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16909577

RESUMO

Little is known about how the surrounding modified matrix affects tree recruitment in fragmented forests. We contrasted effects of two different matrix types, Vismia- and Cecropia-dominated regrowth, on recruitment of pioneer tree species in forest fragments in central Amazonia. Our analyses were based on 22, 1-ha plots in seven experimental forest fragments ranging in size from 1 to 100 ha. By 13 to 17 years after fragmentation, the population density of pioneer trees was significantly higher in plots surrounded by Vismia regrowth than in plots surrounded by Cecropia regrowth, and the species composition and dominance of pioneers differed markedly between the two matrix types. Cecropia sciadophylla was the most abundant pioneer in fragments surrounded by Cecropia regrowth (constituting nearly 50% of all pioneer trees), whereas densities of species in Vismia-surrounded fragments were distributed more evenly. Thus the surrounding matrix had a strong influence on patterns of tree recruitment in Amazonian forest fragments.


Assuntos
Ecossistema , Árvores/fisiologia , Conservação dos Recursos Naturais , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA