Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6072, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055462

RESUMO

Honey bee colony management is critical to mitigating the negative effects of biotic and abiotic stressors. However, there is significant variation in the practices implemented by beekeepers, which results in varying management systems. This longitudinal study incorporated a systems approach to experimentally test the role of three representative beekeeping management systems (conventional, organic, and chemical-free) on the health and productivity of stationary honey-producing colonies over 3 years. We found that the survival rates for colonies in the conventional and organic management systems were equivalent, but around 2.8 times greater than the survival under chemical-free management. Honey production was also similar, with 102% and 119% more honey produced in conventional and organic management systems, respectively, than in the chemical-free management system. We also report significant differences in biomarkers of health including pathogen levels (DWV, IAPV, Vairimorpha apis, Vairimorpha ceranae) and gene expression (def-1, hym, nkd, vg). Our results experimentally demonstrate that beekeeping management practices are key drivers of survival and productivity of managed honey bee colonies. More importantly, we found that the organic management system-which uses organic-approved chemicals for mite control-supports healthy and productive colonies, and can be incorporated as a sustainable approach for stationary honey-producing beekeeping operations.


Assuntos
Mel , Microsporídios , Varroidae , Abelhas , Animais , Estudos Longitudinais , Criação de Abelhas/métodos
2.
Front Physiol ; 13: 844820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350686

RESUMO

Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata. Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc, was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA