RESUMO
BACKGROUND: Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE: In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS: To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION: Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.
Assuntos
COVID-19 , Trombose , Humanos , Receptor PAR-2 , SARS-CoV-2 , Células EndoteliaisRESUMO
BACKGROUND: ADP-induced platelet activation leads to cell surface expression of several proteins, including TF (tissue factor). The role of ADP receptors in platelet TF modulation is still unknown. We aimed to assess the (1) involvement of P2Y1 and P2Y12 receptors in ADP-induced TF exposure; (2) modulation of TFpos-platelets in anti-P2Y12-treated patients with coronary artery disease. Based on the obtained results, we revisited the intracellular localization of TF in platelets. METHODS: The effects of P2Y1 or P2Y12 antagonists on ADP-induced TF expression and activity were analyzed in vitro by flow cytometry and thrombin generation assay in blood from healthy subjects, P2Y12-/-, and patients with gray platelet syndrome. Ex vivo, P2Y12 inhibition of TF expression by clopidogrel/prasugrel/ticagrelor, assessed by VASP (vasodilator-stimulated phosphoprotein) platelet reactivity index, was investigated in coronary artery disease (n=238). Inhibition of open canalicular system externalization and electron microscopy (TEM) were used for TF localization. RESULTS: In blood from healthy subjects, stimulated in vitro by ADP, the percentage of TFpos-platelets (17.3±5.5%) was significantly reduced in a concentration-dependent manner by P2Y12 inhibition only (-81.7±9.5% with 100 nM AR-C69931MX). In coronary artery disease, inhibition of P2Y12 is paralleled by reduction of ADP-induced platelet TF expression (VASP platelet reactivity index: 17.9±11%, 20.9±11.3%, 40.3±13%; TFpos-platelets: 10.5±4.8%, 9.8±5.9%, 13.6±6.3%, in prasugrel/ticagrelor/clopidogrel-treated patients, respectively). Despite this, 15% of clopidogrel good responders had a level of TFpos-platelets similar to the poor-responder group. Indeed, a stronger P2Y12 inhibition (130-fold) is required to inhibit TF than VASP. Thus, a VASP platelet reactivity index <20% (as in prasugrel/ticagrelor-treated patients) identifies patients with TFpos-platelets <20% (92% sensitivity). Finally, colchicine impaired in vitro ADP-induced TF expression but not α-granule release, suggesting that TF is open canalicular system stored as confirmed by TEM and platelet analysis of patients with gray platelet syndrome. CONCLUSIONS: Data show that TF expression is regulated by P2Y12 and not P2Y1; P2Y12 antagonists downregulate the percentage of TFpos-platelets. In clopidogrel good-responder patients, assessment of TFpos-platelets highlights those with residual platelet reactivity. TF is stored in open canalicular system, and its membrane exposure upon activation is prevented by colchicine.
Assuntos
Doença da Artéria Coronariana , Síndrome da Plaqueta Cinza , Humanos , Plaquetas/metabolismo , Clopidogrel/farmacologia , Doença da Artéria Coronariana/metabolismo , Síndrome da Plaqueta Cinza/metabolismo , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/metabolismo , Testes de Função Plaquetária/métodos , Cloridrato de Prasugrel/metabolismo , Cloridrato de Prasugrel/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12 , Tromboplastina/metabolismo , TicagrelorRESUMO
Cardiovascular (CV) disease prevention with low-dose aspirin can be less effective in patients with a faster recovery of platelet (PLT) cyclooxygenase (COX)-1 activity during the 24-hour dosing interval. We previously showed that incomplete suppression of TXA2 over 24 hours can be rescued by a twice daily aspirin regimen. Here we show that reduced PLT glycoprotein (GP)Ibα shedding characterizes patients with accelerated COX-1 recovery and may contribute to higher thrombopoietin (TPO) production and higher rates of newly formed PLT, escaping aspirin inhibition over 24 hours. Two hundred aspirin-treated patients with high CV risk (100 with type 2 diabetes mellitus) were stratified according to the kinetics of PLT COX-1 activity recovery during the 10- to 24-hour dosing interval. Whole proteome analysis showed that PLT from patients with accelerated COX-1 recovery were enriched in proteins involved in cell survival, inhibition of apoptosis and cellular protrusion formation. In agreement, we documented increased plasma TPO, megakaryocyte maturation and proplatelet formation, and conversely increased PLT galactose and reduced caspase 3, phosphatidylserine exposure and ADAM17 activation, translating into diminished GPIbα cleavage and glycocalicin (GC) release. Treatment of HepG2 cells with recombinant GC led to a dose-dependent reduction of TPO mRNA in the liver, suggesting that reduced GPIbα ectodomain shedding may unleash thrombopoiesis. A cluster of clinical markers, including younger age, non-alcoholic fatty liver disease, visceral obesity and higher TPO/GC ratio, predicted with significant accuracy the likelihood of faster COX-1 recovery and suboptimal aspirin response. Circulating TPO/GC ratio, reflecting a dysregulation of PLT lifespan and production, may provide a simple tool to identify patients amenable to more frequent aspirin daily dosing.
Assuntos
Diabetes Mellitus Tipo 2 , Trombocitopenia , Humanos , Aspirina/farmacologia , Trombopoese , Diabetes Mellitus Tipo 2/metabolismo , Plaquetas/metabolismo , Trombocitopenia/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismoRESUMO
Coronavirus disease 2019 (COVID-19) is a pandemic syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection induces a process of inflammation and thrombosis supported by an altered platelet activation state. This platelet activation is peculiar being characterized by the formation of platelet-leukocytes rather than platelet-platelet aggregates and by an increased procoagulant potential supported by elevated levels of TF positive platelets and microvesicles.Therapeutic strategies targeting, beyond systemic inflammation (i.e. with tocilizumab, an anti interleukin-6 receptor), this state of platelet activation might therefore be beneficial. Among the antithrombotic drugs proposed as candidates to treat patients with SARS-CoV-2 infection, antiplatelet drugs, such as aspirin are showing promising results.
Assuntos
Plaquetas/metabolismo , COVID-19/sangue , Humanos , SARS-CoV-2RESUMO
Several contributions of circulating microvesicles (MVs) to the endothelial dysfunction have been reported in the past; a head-to-head comparison of platelet- and monocyte-derived MVs has however never been performed. To this aim, we assessed the involvement of these MVs in vessel damage related processes, i.e., oxidative stress, inflammation, and leukocyte-endothelial adhesion. Platelets and monocytes isolated from healthy subjects (HS, n = 15) were stimulated with TRAP-6 and LPS to release MVs that were added to human vascular endothelial cell (hECV) culture to evaluate superoxide anion production, inflammatory markers (IL-6, TNFα, NF-κB mRNA expression), and hECV adhesiveness. The effects of the MVs-induced from HS were compared to those induced by MVs spontaneously released from cells of patients with ST-segment elevation myocardial infarction (STEMI, n = 7). MVs released by HS-activated cells triggered a threefold increase in oxidative burst in a concentration-dependent manner. Only MVs released from monocytes doubled IL-6, TNFα, and NF-κB mRNA expression and monocyte-endothelial adhesion. Interestingly, the effects of the MVs isolated from STEMI-monocytes were not superimposable to previous ones except for adhesion to hECV. Conversely, MVs released from STEMI-platelets sustained both redox state and inflammatory phenotype. These data provide evidence that MVs released from activated and/or pathologic platelets and monocytes differently affect endothelial behavior, highlighting platelet-MVs as causative factors of impaired endothelial function in the acute phase of STEMI.
Assuntos
Micropartículas Derivadas de Células , Infarto do Miocárdio com Supradesnível do Segmento ST , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Monócitos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoAssuntos
COVID-19 , Monócitos , SARS-CoV-2 , Tromboplastina , Trombose , Humanos , COVID-19/imunologia , COVID-19/complicações , COVID-19/sangue , Trombose/sangue , Trombose/imunologia , Trombose/etiologia , Monócitos/imunologia , Monócitos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Tromboplastina/metabolismoRESUMO
Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.
Assuntos
Vesículas Extracelulares/metabolismo , Trombose/metabolismo , Animais , Biomarcadores/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Exossomos/metabolismo , HumanosRESUMO
Tissue factor (TF), the key activator of the blood coagulation cascade and of thrombus formation, is also expressed by circulating human platelets. Despite the documented in-depth characterization of platelet TF carried out in the past 15 years, some authors still fail to identify TF in platelets, especially when assessment in platelet-rich plasma (PRP) or washed platelets is carried out. This study aims to extend the characterization of the subset of TF-positive platelets in PRP from healthy subjects and to verify how different centrifugation forces, used to prepare the PRP, could affect the analysis of TF-positive platelets. Data indicate that large-size platelets express significantly higher amount of TF compared to small-size cells, in terms of both TF protein and TF mRNA. Upon stimulation, large platelets readily expose on the cell membrane TF, which is functionally active, i.e., able to generate factor Xa (FXa) as well as thrombin. By contrast, TF activity in small platelets is almost completely quenched by tissue factor pathway inhibitor (TFPI), becoming indeed detectable only after treatment with an anti-TFPI antibody. Our data highlight that particular attention must be paid to the preparation and collection of the PRP since such preanalytical variables may influence the platelet recovery and in turn affect subsequent analysis, whether it is flow cytometry, functional activity tests, proteome, or transcriptome analysis. Indeed, the TF-positive subset of large platelets can easily be lost if centrifugation protocols are not optimized, thus erroneously leading to a false-negative result.
Assuntos
Plaquetas/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Citometria de Fluxo , HumanosRESUMO
BACKGROUND: Cardiovascular disease is important in rheumatoid arthritis (RA). Tissue factor (TF) is expressed upon platelet activation and initiates coagulation. Anti-tumour necrosis factor-α (TNFα) agents seem to decrease RA-associated cardiovascular events. We investigated whether (1) TNFα activates human platelets and (2) TNFα pharmacological blockade modulates the platelet-leucocyte reciprocal activation in RA. DESIGN: The expression of platelet TNFα receptors has been assessed by flow cytometry and immunogold electron microscopy. Platelet and leucocyte activation has been assessed also in the presence of antibodies against the TNFα receptors 1 and 2 and of infliximab. TF expression, binding to fibrinogen and phosphatidylserine exposure, has been assessed by flow cytometry, TF activity by coagulation time and by endogenous thrombin generation. Markers of platelet and leucocyte activation have been assessed in 161 subjects: 42 patients with RA, 12 with osteoarthritis, 37 age-matched and sex-matched patients with chronic stable angina and 70 age-matched and sex-matched healthy subjects. RESULTS: TNFα elicited the platelet activation and the expression of TF, which in turn prompted thrombin generation and clot formation. Inhibition of the TNFα-induced activation restricted platelet ability to activate leucocytes and to induce leucocyte TF. TNFα inhibition did not influence platelet activation induced by collagen, ADP or thrombin receptor activating peptide-6. Platelets of patients with RA were more activated than those of controls. Activation was reduced in patients treated with TNFα inhibitors. CONCLUSIONS: TNFα-dependent pathways control platelet activation and TF expression in RA. Further studies will verify whether the protective effect of TNFα inhibitors on cardiovascular events involves their ability to modulate platelet function.
Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/sangue , Artrite Reumatoide/tratamento farmacológico , Ativação Plaquetária/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antirreumáticos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Adesão Celular/fisiologia , Feminino , Humanos , Contagem de Leucócitos , Leucócitos/fisiologia , Masculino , Pessoa de Meia-Idade , Selectina-P/fisiologia , Ativação Plaquetária/fisiologia , Proteínas Recombinantes/farmacologia , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/fisiologiaRESUMO
PURPOSE: The benefit of angiotensin converting enzyme (ACE) inhibition in chronic heart failure (HF) is partially due to its effects on pulmonary function and particularly on lung diffusion, the latter being counteracted by acetylsalicylic acid (ASA). Tissue ACE activity is largely determined by an insertion/deletion (I/D) polymorphism resulting in three possible genotypes (DD, ID and II). It is not clear if ACE inhibitor therapy could exert different effects in these genotypes. The aim of the study was to understand whether I/D polymorphism interferes with ACE inhibitor's protection of the lungs in HF during acute fluid overload. METHODS: 100 HF patients (left ventricular ejection fraction ≤40 %) in stable clinical conditions, treated with enalapril but without ASA performed pulmonary function tests including lung diffusion (DLco) and its subcomponents, membrane diffusion (Dm) and capillary volume (Vcap), and a cardiopulmonary exercise test before and immediately after rapid infusion of 500 cc saline. RESULTS: ACE I/D genotype prevalence was: DD = 28, ID =55 and II = 17 cases. No significant differences in major pulmonary function and exercise parameters were observed before saline infusion among ACE genotypes. After fluid challenge, DD patients presented a higher DLco and Dm reduction than ID and II (DLco -2.3 ± 1.3 vs. -0.8 ± 1.9 and -0.6 ± 1 mL/mmHg/min, p < 0.0001 and p < 0.01; Dm -7 ± 5 vs. -3.2 ± 7.4 and -1.3 ± 5 mL/mmHg/min, p < 0.05, respectively) and a higher increase in VE/VCO2 slope than II (1.8 ± 1.9 vs. -0.8 ± 2.3, p = 0.01). CONCLUSIONS: ACE DD genotype is associated with higher vulnerability of the alveolar-capillary membrane to acute fluid overload in HF patients treated with ACE inhibitors.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Polimorfismo Genético/genética , Aspirina/farmacologia , Enalapril/farmacologia , Teste de Esforço/métodos , Feminino , Genótipo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/efeitos dos fármacos , Testes de Função Respiratória/métodosRESUMO
The contribution of vessel wall-derived tissue factor (TF) to atherothrombosis is well established, whereas the pathophysiological relevance of the blood-borne TF is still a matter of debate, and controversies on the presence of platelet-associated TF still exist. In the past 15 years, several studies have documented the presence of TF in human platelets, the capacity of human platelets to use TF mRNA to make de novo protein synthesis, and the increase in the percentage of TF positive platelets in pathological conditions such as coronary artery disease (CAD). The exposure of vessel wall-derived TF at the site of vascular injury would play its main role in the initiation phase, whereas the blood-borne TF carried by platelets would be involved in the propagation phase of thrombus formation. More recent data indicate that megakaryocytes are committed to release into the bloodstream a well-defined number of TF-carrying platelets, which represents only a fraction of the whole platelet population. These findings are in line with the evidence that platelets are heterogeneous in their functions and only a subset of them is involved in the hemostatic process. In this review we summarize the existing knowledge on platelet associated TF and speculate on its relevance to physiology and to atherothrombosis and CAD.
Assuntos
Aterosclerose/sangue , Plaquetas/metabolismo , Doença da Artéria Coronariana/sangue , Megacariócitos/metabolismo , Tromboplastina/metabolismo , Trombose/sangue , Animais , HumanosRESUMO
Genome-wide platelet transcriptomics is increasingly used to uncover new aspects of platelet biology and as a diagnostic and prognostic tool. Nevertheless, platelet isolation methods for transcriptomic studies are not standardized, introducing challenges for cross-study comparisons, data integration, and replication. In this prospective multicenter study, called "Standardizing Platelet Transcriptomics for Discovery, Diagnostics, and Therapeutics in the Thrombosis and Hemostasis Community (STRIDE)" by the International Society on Thrombosis and Haemostasis Scientific and Standardization Committees, we assessed how 3 of the most commonly used platelet isolation protocols influence metrics from next-generation bulk RNA sequencing and functional assays. Compared with washing alone, more stringent removal of leukocytes by anti-CD45 beads or PALL filters resulted in a sufficient quantity of RNA for next-generation sequencing and similar quality of RNA sequencing metrics. Importantly, stringent removal of leukocytes resulted in the lower relative expression of known leukocyte-specific genes and the higher relative expression of known platelet-specific genes. The results were consistent across enrolling sites, suggesting that the techniques are transferrable and reproducible. Moreover, all 3 isolation techniques did not influence basal platelet reactivity, but agonist-induced integrin αIIbß3 activation is reduced by anti-CD45 bead isolation compared with washing alone. In conclusion, the isolation technique chosen influences genome-wide transcriptional and functional assays in platelets. These results should help the research community make informed choices about platelet isolation techniques in their own platelet studies.
Assuntos
Plaquetas , Perfilação da Expressão Gênica , Transcriptoma , Humanos , Plaquetas/metabolismo , Estudos Prospectivos , Perfilação da Expressão Gênica/métodos , Separação Celular/métodos , Antígenos Comuns de Leucócito/metabolismo , Reprodutibilidade dos Testes , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: Scientific and clinical interest in extracellular vesicles (EVs) is growing. EVs that expose tissue factor (TF) bind factor VII/VIIa and can trigger coagulation. Highly procoagulant TF-exposing EVs are detectable in the circulation in various diseases, such as sepsis, COVID-19, or cancer. Many in-house and commercially available assays have been developed to measure EV-TF activity and antigen, but only a few studies have compared some of these assays. OBJECTIVES: The International Society on Thrombosis and Haemostasis Scientific and Standardization Committee Subcommittee on Vascular Biology initiated a multicenter study to compare the sensitivity, specificity, and reproducibility of these assays. METHODS: Platelet-depleted plasma samples were prepared from blood of healthy donors. The plasma samples were spiked either with EVs from human milk or EVs from TF-positive and TF-negative cell lines. Plasma was also prepared from whole human blood with or without lipopolysaccharide stimulation. Twenty-one laboratories measured EV-TF activity and antigen in the prepared samples using their own assays representing 18 functional and 9 antigenic assays. RESULTS: There was a large variability in the absolute values for the different EV-TF activity and antigen assays. Activity assays had higher specificity and sensitivity compared with antigen assays. In addition, there was a large intra-assay and interassay variability. Functional assays that used a blocking anti-TF antibody or immunocapture were the most specific and sensitive. Activity assays that used immunocapture had a lower coefficient of variation compared with assays that isolated EVs by high-speed centrifugation. CONCLUSION: Based on this multicenter study, we recommend measuring EV-TF using a functional assay in the presence of an anti-TF antibody.
Assuntos
Vesículas Extracelulares , Tromboplastina , Humanos , Tromboplastina/metabolismo , Vesículas Extracelulares/metabolismo , Reprodutibilidade dos Testes , Coagulação Sanguínea , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Valor Preditivo dos TestesRESUMO
Eicosanoids are biologically active lipids in both physiologic and pathophysiologic situations. These mediators rapidly generate at sites of inflammation and act through specific receptors that following the generation of a signal transduction cascade, lead to coordinated cellular responses to specific stimuli. Prostanoids, that is, prostaglandins and thromboxane A(2), are active products of the cyclooxygenase pathway, while leukotrienes and lipoxins derive from the lipoxygenase pathway. In addition, a complex family of prostaglandin isomers called isoprostanes is derived as free-radical products of oxidative metabolism. While there is a wide consensus on the importance of the balance between proaggregating (thromboxane A(2)) and antiaggregating (prostacyclin) cyclooxygenase products in cardiovascular homeostasis, an increasing body of evidence suggests a key role also for other eicosanoids generated by lipoxygenases, epoxygenases, and nonenzymatic pathways in cardiovascular diseases. This intricate network of lipid mediators is unique considering that from a single precursor, arachidonic acid, may derive an array of bioproducts that interact within each other synergizing or, more often, behaving as functional antagonists.
Assuntos
Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Inibidores de Ciclo-Oxigenase/uso terapêutico , Eicosanoides/biossíntese , Prostaglandinas/biossíntese , Acidente Vascular Cerebral/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/fisiopatologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Sensibilidade e Especificidade , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologiaRESUMO
Lipoxin (LX) A(4,) a main endogenous stop-signal of inflammation, activates the G-protein-coupled receptor FPR2/ALX, which triggers potent anti-inflammatory signaling in vivo. Thus, the regulation of FPR2/ALX expression may have pathophysiological and therapeutic relevance. Here, we mapped a nucleotide sequence with strong FPR2/ALX promoter activity. Chromatin immunoprecipitation revealed specificity protein 1 (Sp1) binding to the core promoter. Site-directed mutagenesis of the Sp1 cis-acting element and Sp1 overexpression established that this transcription factor is key for maximal promoter activity, which is instead suppressed by DNA methylation. LXA(4) enhanced FPR2/ALX promoter activity (+74%) and mRNA expression (+87.5%) in MDA-MB231 cells. A single nucleotide mutation (A/G) was detected in the core promoter of one subject with history of cardiovascular disease and of his two daughters. This mutation reduced by â¼35-90% the promoter activity in vitro. Moreover, neutrophils from individuals carrying the A/G variant displayed â¼10- and 3-fold reduction in FPR2/ALX mRNA and protein, respectively, compared with cells from their relatives or healthy volunteers expressing the wild-type allele. These results uncover FPR2/ALX transcriptional regulation and provide the first evidence of mutations that affect FPR2/ALX transcription, thus opening new opportunities for the understanding of the LXA(4)-FPR2/ALX axis in human disease.
Assuntos
Regulação da Expressão Gênica , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/genética , Transcrição Gênica/genética , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Metilação de DNA , Variação Genética , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/metabolismo , Sítio de Iniciação de TranscriçãoRESUMO
INTRODUCTION: The usefulness of anticoagulation in patients with atrial fibrillation (AF) is well known. However, the inherent limitations of vitamin K antagonists (VKAs) have made the development of new oral anticoagulants necessary. Drugs directed against thrombin or the factor Xa are currently available. AREAS COVERED: These molecules, being administered at fixed doses and not requiring laboratory monitoring, overcome one crucial problem associated with the use of VKAs. However, data about the bleeding risk related to the use of these molecules should be further analyzed. EXPERT OPINION: The efficacy of direct anticoagulants (DACs) in AF-related stroke prevention has been considered the primary outcome in all Phase III published trials. On the other hand, the reduction of the bleeding risk is an important goal achieved by the DACs as compared with VKAs. Besides data deriving from randomized trials, when talking about new drugs, the need of evidences from the 'everyday clinical practice' are often requested. The aim of this literature revision is to report and analyze data from specific subgroups about which little is known. In particular, information about the use of DACs in oncologic patients, in patients receiving concomitant antiplatelet drugs and in the perioperative period is currently lacking. The parallel evaluation of all these data may lead to the identification of clinical and demographical criteria to choose when to switch to DACs.
Assuntos
Anticoagulantes/uso terapêutico , Antimetabólitos/efeitos adversos , Antitrombinas/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Drogas em Investigação/uso terapêutico , Vitamina K/antagonistas & inibidores , Animais , Anticoagulantes/efeitos adversos , Anticoagulantes/antagonistas & inibidores , Antimetabólitos/antagonistas & inibidores , Antitrombinas/efeitos adversos , Ensaios Clínicos como Assunto , Drogas em Investigação/efeitos adversos , Humanos , Hemorragias Intracranianas/induzido quimicamente , Hemorragias Intracranianas/prevenção & controle , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/prevenção & controleRESUMO
AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of plasma low-density lipoprotein cholesterol (LDL-C) concentration, and its inhibition reduces the risk of atherosclerotic cardiovascular disease (ASCVD). We aimed to assess the sex-differential effect of either pharmacological or genetic inhibition of PCSK9 on LDL-C levels. METHODS AND RESULTS: We meta-analyzed six real-life studies (1216 men and 641 women) that investigated the effects of PCSK9 monoclonal antibodies (mAbs) on LDL-C reduction in men and women. Despite higher LDL-C levels in women at baseline [mean difference (MD) = 17.4 mg/dL, P < 0.0001, women = 175 mg/dL vs. men = 152 mg/dL], the LDL-C reduction under PCSK9 mAb treatment was significantly greater in men (MD = 7.6 mg/dL, 95% confidence interval: 2.7-12.4, P = 0.002) than in women.We tested the sex-related association of the loss-of-function variant PCSK9-R46L with LDL-C plasma levels in 382 813 individuals (219 301 women and 163 512 men) free of lipid-lowering drugs from the UK Biobank general population cohort. The magnitude of LDL-C reduction was larger in men than in women (mean LDL-C difference: -35 mg/dL vs. -26 mg/dL, when comparing homozygous carriers with non-carriers in men and women, respectively). The relationship between PCSK9-R46L and LDL-C was significantly dependent on sex (P for interaction = 7.2e-04). CONCLUSION: These results demonstrate by complementary approaches that the decrease in LDL-C mediated by PCSK9 inhibition is slightly, but significantly, less marked in women than in men. These data reinforce the need for specific studies to develop sex-specific recommendations for the management of ASCVD in women.