Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 121(40): 7572-7575, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28956916

RESUMO

We report the rates of electron transfer (ET) reactions of electronically excited [Ir(COD)(µ-Me2pz)]2 with onium salt photoacid generators (PAGs). The reduction potentials of the PAGs span a large electrochemical window that allows determination of the driving force dependence of the ET reactions. Rate constants of ET from electronically excited [Ir(COD)(µ-Me2pz)]2 to onium PAGs are determined by the reaction driving force until the diffusion limit in acetonitrile is reached.

2.
J Am Chem Soc ; 135(29): 10614-7, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23855407

RESUMO

The homoleptic arylisocyanide tungsten complexes, W(CNXy)6 and W(CNIph)6 (Xy = 2,6-dimethylphenyl, Iph = 2,6-diisopropylphenyl), display intense metal to ligand charge transfer (MLCT) absorptions in the visible region (400-550 nm). MLCT emission (λ(max) ≈ 580 nm) in tetrahydrofuran (THF) solution at rt is observed for W(CNXy)6 and W(CNIph)6 with lifetimes of 17 and 73 ns, respectively. Diffusion-controlled energy transfer from electronically excited W(CNIph)6 (*W) to the lowest energy triplet excited state of anthracene (anth) is the dominant quenching pathway in THF solution. Introduction of tetrabutylammonium hexafluorophosphate, [Bu(n)4N][PF6], to the THF solution promotes formation of electron transfer (ET) quenching products, [W(CNIph)6](+) and [anth](•-). ET from *W to benzophenone and cobalticenium also is observed in [Bu(n)4N][PF6]/THF solutions. The estimated reduction potential for the [W(CNIph)6](+)/*W couple is -2.8 V vs Cp2Fe(+/0), establishing W(CNIph)6 as one of the most powerful photoreductants that has been generated with visible light.

3.
Earth Space Sci ; 4(8): 506-539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29098171

RESUMO

The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 µrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 µrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

4.
Photochem Photobiol Sci ; 3(11-12): 1052-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15570395

RESUMO

The photochemistry of 1-(4-tert-butylphenyl)-tetrahydro-thiopyranium triflate (1), an arylcycloalkylsulfonium salt, was investigated in acetonitrile and methanol at low conversion in order to understand the reaction mechanism and its efficiency as photoacid generator. Both types of C-S bond in 1 are cleaved from the excited state. The heterolytic cleavage of the methylene C-S bond produces 4-t-BuC(6)H(4)S(CH(2))(4)CH(2)(+) by ring opening. The carbocation generates acid and arylalkenylsufides by elimination or 1,2 hydride shift and elimination. The predominantly homolytic cleavage of the aryl C-S bond yields 4-t-BuC(6)H(4)* and c-C(5)H(10)S(+)* as the fragmentation products. The radicals react with the solvent forming acid, pentamethylene sulfide and tert-butylbenzene. In methanol, the formation of 4-tert-butylanisole indicates a contribution of solvolysis in the excited state of 1 or a competing formation of free aryl cation by heterolytic fragmentation. The acid generation efficiency of 1 in solution (acetonitrile or methanol) is lower than that corresponding to triphenylsulfonium triflate (TPS OTf) under the same conditions. This suggests a pathway for the regeneration of 1 after photocleavage. The photochemistry of 1 is discussed in terms of the contribution of fragmentation and ring opening reaction paths to its overall acid generation efficiency, a key property in terms of its applications in resist formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA