Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Anal Chem ; 94(47): 16337-16344, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36382944

RESUMO

Tacrolimus (FK506) is an immunosuppressant drug (ISD) used to prevent organ rejection after transplantation that exhibits a narrow therapeutic window and is subject to wide inter- and intra-individual pharmacokinetic fluctuations requiring careful monitoring. The immunosuppressive capacity of FK506 arises from the formation of a complex with immunophilin FKBP1A. This paper describes the use of FKBP1A as an alternative to common antibodies for biosensing purposes. Bioassays use recombinant FKBP1A fused to the emerald green fluorescent protein (FKBP1A-EmGFP). Samples containing the immunosuppressant are incubated with the recombinant protein, and free FKBP1A-EmGFP is captured by magnetic beads functionalized with FK506 to generate a fluorescence signal. Recombinant receptor-drug interaction is evaluated by using a quartz crystal microbalance and nuclear magnetic resonance. The limit of detection (3 ng mL-1) and dynamic range thus obtained (5-70 ng mL-1) fulfill therapeutic requirements. The assay is selective for other ISD usually coadministered with FK506 and allows the drug to be determined in human whole blood samples from organ transplant patients with results comparing favorably with those of an external laboratory.


Assuntos
Receptores de Droga , Tacrolimo , Humanos , Proteínas de Fluorescência Verde , Imunossupressores
2.
J Enzyme Inhib Med Chem ; 34(1): 1711-1715, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31547734

RESUMO

α-Synuclein (α-syn), a disordered cytoplasmatic protein, plays a fundamental role in the pathogenesis of Parkinson's disease (PD). Here, we have shown, using photophysical measurements, that addition of FKBP12 to α-syn solutions, dramatically accelerates protein aggregation, leading to an explosion of dendritic structures revealed by fluorescence and phase-contrast microscopy. We have further demonstrated that this aberrant α-syn aggregation can be blocked using a recently discovered non-immunosuppressive synthetic inhibitor of FKBP12, ElteN378. The role of FKBP12 and of ElteN378 in the α-syn aggregation mechanism has been elucidated using molecular dynamics simulations based on an effective coarse-grained model. The reported data not only reveal a new potent synthetic drug as a candidate for early stage treatment of α-syn dependent neurodegenerations but also pave the way to a deeper understanding of the mechanism of action of FKBP12 on α-syn oligomeric aggregation, a topic which is still controversial.


Assuntos
Piperidinas/farmacologia , Agregados Proteicos/efeitos dos fármacos , Proteína 1A de Ligação a Tacrolimo/antagonistas & inibidores , alfa-Sinucleína/química , Dendrímeros/química , Cinética , Simulação de Dinâmica Molecular , Piperidinas/química , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo
3.
Chirality ; 27(11): 784-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26365990

RESUMO

Chiral discrimination in a racemic mixture of dipalmitoylphosphatidylcholine (DPPC) is induced by a new selector at the water-air interface: L-DPPC is segregated in the condensed phase of a Langmuir monolayer upon interactions with an enantiopure amphiphilic compound.


Assuntos
Fosfolipídeos/química , Estereoisomerismo , Propriedades de Superfície
4.
Phys Chem Chem Phys ; 15(43): 18881-93, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24089197

RESUMO

We have synthesized and done an extensive chemical-physical analysis of the behavior of a new compound, named MBET306, a synthetic precursor of the recently discovered tartrate-based inhibitors of the protein Tumor Necrosis factor-α Converting Enzyme (TACE). Experimental and theoretical data have shown that in water solution MBET306 is overwhelmingly found as a monoanion at physiological pH, in a conformation that differs substantially from that detected in the known co-crystal structures of MBET306 derivatives bound to TACE. The body of collected experimental and theoretical data indicates that the monoanionic species binds Zn(ii) inducing a strong stabilization of the crystal-like arrangement of the central tartrate zinc-binding group, lending support for a two step TACE docking mechanism via a zinc-bound intermediate. The thorough chemical-physical characterization of the conformational behavior of free and zinc-bound MBET306 in water bulk solution opens new avenues for the rational drug design of tartrate-based highly specific TACE inhibitors.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Inibidores Enzimáticos/química , Pirrolidinas/química , Tartaratos/química , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Sítios de Ligação , Domínio Catalítico , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Ligação Proteica , Pirrolidinas/síntese química , Pirrolidinas/metabolismo , Termodinâmica , Água/química , Zinco/química
5.
Colloids Surf B Biointerfaces ; 222: 113115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603410

RESUMO

Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.


Assuntos
Gangliosídeo G(M1) , Membranas Artificiais , Colesterol/química , Microdomínios da Membrana/química
6.
J Med Chem ; 66(14): 9519-9536, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37433124

RESUMO

Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-ß oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.


Assuntos
Doenças Neurodegenerativas , Agregados Proteicos , Humanos , Membrana Celular/metabolismo , Proteínas Amiloidogênicas/química , Doenças Neurodegenerativas/metabolismo , Lipídeos , Bicamadas Lipídicas/metabolismo , Peptídeos beta-Amiloides/metabolismo
7.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214929

RESUMO

We propose a sensing platform based on graphene oxide/silver nanoparticles arrays (GO/AgNPs) for the detection and discrimination of the native and toxic fibrillar forms of an amyloid-prone protein, lysozyme, by means of a combination of Quartz Crystal Microbalance (QCM) and Surface Enhanced Raman Scattering (SERS) measurements. The GO/AgNPs layer system was obtained by Langmuir-Blodgett assembly of the silver nanoparticles followed by controlled adsorption of GO sheets on the AgNPs array. The adsorption of native and fibrillar lysozyme was followed by means of QCM, the measurements provided the kinetics and the mechanism of adsorption as a function of protein concentration as well as the mass and thickness of the adsorbed protein on both nanoplatforms. The morphology of the protein layer was characterized by Confocal Laser Scanning Microscopy experiments on Thioflavine T-stained samples. SERS experiments performed on arrays of bare AgNPs and of GO coated AgNP after native, or fibrillar, lysozyme adsorption allowed for the discrimination of the native form and toxic fibrillar structure of lysozyme. Results from combined QCM/SERS studies indicate a general construction paradigm for an efficient sensing platform with high selectivity and low detection limit for native and amyloid lysozyme.

8.
Phys Chem Chem Phys ; 13(19): 8769-82, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21455519

RESUMO

This perspective paper provides some illustrative examples on the interplay between information gathered on planar supported lipid bilayers (SLB) and unilamellar lipid vesicles (ULV) to get an integrated description of phenomena occurring at the nanoscale that involve locally bilayered structures. Similarities and differences are underlined and critically compared in terms of biomimetic fidelity and instrumental accessibility to structural and dynamical parameters, focusing on some recent reports that either explicitly address this comparison or introducing some studies that separately investigate the same process in SLB and lipid vesicles. Despite the structural similarity on the nanoscale, the different topology implies radically different characterization techniques that have evolved in sectorial and separated approaches. The quest for increasing levels of compositional complexity for bilayered systems should not result in a loss of structural and dynamical control: this is the central challenge of future research in this area, where the integrated approach highlighted in this contribution would enable improved levels of understanding.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Modelos Biológicos , Modelos Moleculares , Estrutura Molecular
9.
Neural Regen Res ; 15(12): 2195-2202, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594030

RESUMO

Intrinsically disordered proteins, such as tau or α-synuclein, have long been associated with a dysfunctional role in neurodegenerative diseases. In Alzheimer's and Parkinson's' diseases, these proteins, sharing a common chemical-physical pattern with alternating hydrophobic and hydrophilic domains rich in prolines, abnormally aggregate in tangles in the brain leading to progressive loss of neurons. In this review, we present an overview linking the studies on the implication of the peptidyl-prolyl isomerase domain of immunophilins, and notably FKBP12, to a variety of neurodegenerative diseases, focusing on the molecular origin of such a role. The involvement of FKBP12 dysregulation in the aberrant aggregation of disordered proteins pinpoints this protein as a possible therapeutic target and, at the same time, as a predictive biomarker for early diagnosis in neurodegeneration, calling for the development of reliable, fast and cost-effective detection methods in body fluids for community-based screening campaigns.

10.
Nanoscale ; 12(44): 22596-22614, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33150350

RESUMO

Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Membrana Celular , Colestanos , Espermina/análogos & derivados
11.
Langmuir ; 25(15): 8656-62, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20050046

RESUMO

We report the development of a new type of hydrogel in which a cosolvent has been added to the water component. The gel networks are based on the well-known poly(vinyl alcohol)-borate systems (PVA-borate). However, it is shown that the rheological and solubilizing properties of the hydrogels can be modified drastically by the addition of a cosolvent. The studies have focused on 1-propanol as the added liquid, although it is shown that others (propylene carbonate, 1-pentanol, cyclohexanone, and 2-butanol) are amenable to making modified hydrogels as well. In addition to the rheological measurements, the gels have been investigated by differential scanning calorimetry (free water index) and determination of their solubilizing power. Finally, the gels have been applied to clean and oxidized varnish (patina) from the surface of a XVI-XVII century oil-on-wood painting by Ludovico Cardi detto il Cigoli. The mode of cleaning by and removal of the PVA-borate water/1-propanol gel from the painted surface demonstrate several advantages over other gels used in art conservation.


Assuntos
Boratos/química , Álcool de Polivinil/química , Solventes/química , Calorimetria/métodos , Varredura Diferencial de Calorimetria , Cultura , Elasticidade , Géis , Modelos Químicos , Óleos , Oscilometria/métodos , Solubilidade , Estresse Mecânico , Viscosidade , Madeira
12.
J Phys Chem B ; 112(48): 15283-94, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18989907

RESUMO

DNA nanoconstructs are obtained in solution by using six unique 42-mer DNA oligonucleotides, whose sequences have been designed to form a pseudohexagonal structure. The required flexibility is provided by the insertion of two non-base-paired thymines in the middle of each sequence that work as flexible hinges and constitute the corners of the nanostructure when formed. We show that hexagonally shaped nanostructures of about 7 nm diameter and their corresponding linear open constructs are formed by self-assembly of the specifically designed linear oligonucleotides. The structural and dynamical characterization of the nanostructure is obtained in situ for the first time by using dynamic light scattering (DLS), a noninvasive method that provides a fast dynamic and structural analysis and allows the characterization of the different synthetic DNA nanoconstructs in solution. A validation of the LS results is obtained through Monte Carlo (MC) simulations and atomic force microscopy (AFM). In particular, a mesoscale molecular model for DNA, developed by Knotts et al., is exploited to perform MC simulations and to obtain information about the conformations as well as the conformational flexibilities of these nanostructures, while AFM provides a very detailed particle analysis that yields an estimation of the particle size and size distribution. The structural features obtained by MC and AFM are in good agreement with DLS, showing that DLS is a fast and reliable tool for characterization of DNA nanostructures in solution.


Assuntos
DNA/química , Modelos Estatísticos , Método de Monte Carlo , Simulação por Computador , Luz , Microscopia de Força Atômica , Modelos Moleculares , Nanotecnologia , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Espalhamento de Radiação , Raios Ultravioleta
13.
J Phys Chem B ; 112(35): 10942-52, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18693696

RESUMO

DNA monomers and oligomers are currently showing great promise as building blocks for supramolecular arrays that can self-assemble in a fashion preprogrammed by the base pairing code. The design and build-up of hybrid DNA/amphiphilic self-assemblies can expand the range of possible architectures and enhance the selectivity toward a well-specified geometry. We report on the self-assembly properties in aqueous solution of a cholesteryl-tetraethylenglycol single stranded 18-mer oligonucleotide (ON 1TEG-Chol) and on its spontaneous insertion in fluid phospholipid membranes. Up to 500 units of these lipophilic ss-oligonucleotides can be incorporated in the outer leaflet of 350 A radius POPC vesicle. The insertion and hybridization with the complementary oligonucleotide are monitored through light scattering as an increase of hydrodynamic thickness, which is interpreted in terms of average distance between anchoring sites. The conformation of the ss-oligonucleotidic portion is strongly dependent on surface coverage, passing from a quasi-random coil to a more rigid configuration, as concentration increases. Interestingly, conformational details affect in a straightforward fashion the hybridization kinetics. Liposomes with single- and double-strand decorations remain stable within the experimental time window (about one week). The structure represents an example of successful and stable amphiphile/DNA supramolecular hybrid, where a DNA guest is held in a membrane by hydrophobic interactions. The lipophilic oligonucleotide under investigation is therefore a suitable building block that can effectively serve as a hydrophobic anchor in the fluid bilayer to assemble supramolecular constructs based on the DNA digital code.


Assuntos
Colesterol/química , Lipossomos/química , Nanoestruturas/química , Oligonucleotídeos/química , Fosfolipídeos/química , Cinética , Bicamadas Lipídicas/química , Oligonucleotídeos/metabolismo , Análise Espectral , Fatores de Tempo , Temperatura de Transição , Água/química
14.
Org Lett ; 18(21): 5464-5467, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27754688

RESUMO

Noncovalent sulfur···oxygen interactions can increase the stability of chalcogen ortho-substituted phenoxyl radicals. This effect contributes to transforming the 7-hydroxybenzo[b]thiophene moiety in a privileged structural motif to enhance the activity of phenolic antioxidants. A cascade of five consecutive electrophilic reactions occurring in one pot afforded potent and biocompatible α-tocopherol-like antioxidants.

15.
Beilstein J Nanotechnol ; 7: 9-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925348

RESUMO

Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir-Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir-Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis.

16.
ACS Appl Mater Interfaces ; 8(4): 2628-34, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26751095

RESUMO

Hybrid graphene oxide (GO)/metal nanocomposites have been recently proposed as novel surface-enhanced Raman scattering (SERS) substrates. Despite an increasing interest in these systems, standardization in their fabrication process is still lacking but urgently required to support their use for real-life applications. In this work we investigate how the assembly of GO should be conducted to control adsorption geometry and optical properties at the interface with plasmonic nanostructures as monolayer assemblies of silver nanocubes, by tuning main experimental parameters including GO concentration and self-assembly time. We finally identified the experimental conditions for building up a close-fitting soft dressing of the plasmonic surface, which shows optimal characteristics for flexible and reliable SERS detection.

17.
J Chem Theory Comput ; 11(2): 423-35, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580905

RESUMO

We introduce an effective technique for the calculation of the binding free energy in drug-receptor systems using nonequilibrium molecular dynamics and application of the Jarzynski theorem. In essence, this novel methodology constitutes the nonequilibrium adaptation of an ancient free energy perturbation technique called Double Annihilation Method, invented more than 25 years ago [J. Chem. Phys. 1988, 89, 3742-3746] and upon which modern approaches of binding free energy computation in drug-receptor systems are heavily based. The proposed computational approach, termed Fast Switching Double Annihilation Methods (FS-DAM) in honor of its ancient ancestor, is applied to a prototypical example system with multiple binding sites, proving its computational potential and versatility in unraveling multiple site or allosteric binding processes.

18.
J Med Chem ; 56(3): 1041-51, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23301792

RESUMO

Due to its central role in immunosuppression and cell proliferation and due to its specific peptidyl-prolyl-isomerase (PPI) function, the FKBP protein family is at the crossroad of several important metabolic pathways. Members of this family, and notably FK506 binding protein (FKBP12), are thought to be involved in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, as well as in proliferation disorders and cancer. Using an interdisciplinary approach based on computational, synthetic, and experimental techniques, we show that the best potential binders for FKBP proteins optimally expose the two contiguous carbonyl oxygen in the proline-mimetic chain for FKBP docking and are characterized by the abundance of rigid quasi-cyclic structures stabilized in aqueous solution by intraligand hydrophobic interactions mimicking the macrolide structure of the natural FKBP binders FK506 and Rapamycin. These peculiar structural and chemical-physical features define at the same time an ElteX compound and the minimal pharmacore in the FKBP family, shedding new light on the isomerization mechanism of the PPI domain. On the basis of the above hypothesis, we have successfully designed and synthesized several nanomolar ElteX FKBP12 ligands. Among these, ElteN378 is a new low atomic weight ligand with affinity comparable to that of the macrolide Rapamycin.


Assuntos
Piperidinas/farmacologia , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tacrolimo/metabolismo , Fluorescência , Ligantes , Modelos Moleculares , Piperidinas/química , Ligação Proteica
19.
J Mater Chem B ; 1(8): 1096-1100, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32260832

RESUMO

We present a biocompatible device for on demand chemical release in the form of a light-activated sponge-like nanocomposite scaffold, which ensures excellent control over the principal parameters of chemical release and dosage in order to sustain effective therapeutic action. The sponge consists of a porous biopolymer scaffold containing a dispersion of gold nanorods, which acts as an absorber of the incoming laser light, and of thermosensitive micelles, which serve as a reservoir for the drug molecules to be released. The photothermal response of the nanoparticles contained inside the sponge triggers a contraction in proximal micelles, thus promoting the expulsion of the drug that in turn is released from the sponge to the external environment. The peculiar physiochemical and structural properties of the nanocomposite sponges impart a number of interesting features to the proposed drug release system, including the possibility of spatially confining the therapeutic treatment as well as precise control of the amount of released drug as a function of duration and power of the excitation light.

20.
Appl Biochem Biotechnol ; 163(6): 792-802, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20853067

RESUMO

Oil bodies (OBs) are specialised organelles ubiquitously detected in plant oil seeds, which serve as lipid storage compartments. OBs consist of a hydrophobic core of triacylglycerol (TAGs), surrounded by a monolayer of phospholipids (PLs) embedded with some specific proteins with a size ranging from 0.5 to 2 µm. In this work, we report an easy method to reconstitute OBs starting from their constituents and to encapsulate lipophilic molecules, i.e. the fluorescent fluorescein isothiocyanate (FITC) and carboxyfluorescein (CF), into reconstituted OBs. This methods allowed us to produce OBs 4- to 10-fold smaller (50-200 nm) than the native one and to obtain a good recovery (about 40%) of both the fluorescent compounds used in the present work. The properties of reconstituted OBs were investigated by a combination of Brewster angle microscopy, scanning force microscopy, ζ-potential techniques. OBs were stable and formed ordered monolayers when patterned on hydrophobic substrates whereas they showed a higher tendency to aggregate into larger, coalescing OBs when were deposited onto hydrophilic substrates or at the air/water interface. Furthermore, we verified the uptake of FITC-loaded OBs by the MCF-7 breast cancer cell line. Our results indicated that OBs could be envisaged as novel carriers to deliver hydrophobic bioactive compounds.


Assuntos
Corpos de Inclusão/metabolismo , Lipídeos/química , Óleos de Plantas/metabolismo , Ar , Linhagem Celular Tumoral , Corylus/química , Humanos , Espaço Intracelular/metabolismo , Microscopia de Força Atômica , Microscopia Confocal , Prunus/química , Sementes/química , Eletricidade Estática , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA