Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Chem Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965383

RESUMO

Targeted protein degradation (TPD) represents a potent chemical biology paradigm that leverages the cellular degradation machinery to pharmacologically eliminate specific proteins of interest. Although multiple E3 ligases have been discovered to facilitate TPD, there exists a compelling requirement to diversify the pool of E3 ligases available for such applications. Here we describe a clustered regularly interspaced short palindromic repeats (CRISPR)-based transcriptional activation screen focused on human E3 ligases, with the goal of identifying E3 ligases that can facilitate heterobifunctional compound-mediated target degradation. Through this approach, we identified a candidate proteolysis-targeting chimera (PROTAC), 22-SLF, that induces the degradation of FK506-binding protein 12 when the transcription of FBXO22 gene is activated. Subsequent mechanistic investigations revealed that 22-SLF interacts with C227 and/or C228 in F-box protein 22 (FBXO22) to achieve target degradation. Lastly, we demonstrated the versatility of FBXO22-based PROTACs by effectively degrading additional endogenous proteins, including bromodomain-containing protein 4 and the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion protein.

2.
Blood ; 139(2): 228-239, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34359075

RESUMO

Dysregulation of the c-Myc oncogene occurs in a wide variety of hematologic malignancies, and its overexpression has been linked with aggressive tumor progression. Here, we show that poly (ADP-ribose) polymerase 1 (PARP-1) and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphoma. PARP-1 and PARP-2 catalyze the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphoma, whereas PARP-1 deficiency accelerates lymphomagenesis in the Eµ-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in preleukemic Eµ-Myc B cells, resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1 deficiency induces a proinflammatory response and an increase in regulatory T cells, likely contributing to immune escape of B-cell lymphoma, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centered therapeutic strategies, with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumors.


Assuntos
Linfoma de Células B/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinogênese/genética , Dano ao DNA , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Knockout
4.
Infect Immun ; 79(9): 3718-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21708987

RESUMO

Antimicrobial peptides (APs) impose a threat to the survival of pathogens, and it is reasonable to postulate that bacteria have developed strategies to counteract them. Polymyxins are becoming the last resort to treat infections caused by multidrug-resistant Gram-negative bacteria and, similar to APs, they interact with the anionic lipopolysaccharide. Given that polymyxins and APs share the initial target, it is possible that bacterial defense mechanisms against polymyxins will be also effective against host APs. We sought to determine whether exposure to polymyxin will increase Klebsiella pneumoniae resistance to host APs. Indeed, exposure of K. pneumoniae to polymyxin induces cross-resistance not only to polymyxin itself but also to APs present in the airways. Polymyxin treatment upregulates the expression of the capsule polysaccharide operon and the loci required to modify the lipid A with aminoarabinose and palmitate with a concomitant increase in capsule and lipid A species containing such modifications. Moreover, these surface changes contribute to APs resistance and also to polymyxin-induced cross-resistance to APs. Bacterial loads of lipid A mutants in trachea and lungs of intranasally infected mice were lower than those of wild-type strain. PhoPQ, PmrAB, and the Rcs system govern polymyxin-induced transcriptional changes, and there is a cross talk between PhoPQ and the Rcs system. Our findings support the notion that Klebsiella activates a defense program against APs that is controlled by three signaling systems. Therapeutic strategies directed to prevent the activation of this program could be a new approach worth exploring to facilitate the clearance of the pathogen from the airways.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Polimixinas/farmacologia , Animais , Antibacterianos/farmacologia , Arabinose/análogos & derivados , Arabinose/metabolismo , Cápsulas Bacterianas/biossíntese , Cápsulas Bacterianas/genética , Carga Bacteriana , Farmacorresistência Bacteriana Múltipla , Feminino , Klebsiella pneumoniae/metabolismo , Lipídeo A/análise , Pulmão/microbiologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Ácido Palmítico/análise , Traqueia/microbiologia , Fatores de Virulência/biossíntese
5.
Oncogene ; 39(13): 2835-2843, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32001817

RESUMO

Poly(ADP-ribose)-polymerase (PARP)-1 and PARP-2 play an essential role in the DNA damage response. Based on this effect of PARP in the tumor cell itself, PARP inhibitors have emerged as new therapeutic tools both approved and in clinical trials. However, the interactome of multiple other cell types, particularly T cells, within the tumor microenvironment are known to either favor or limit tumorigenesis. Here, we bypassed the embryonic lethality of dually PARP-1/PARP-2-deficient mice by using a PARP-1-deficient mouse with a Cd4-promoter-driven deletion of PARP-2 in T cells to investigate the understudied role of these PARPs in the modulation of T cell responses against AT-3-induced breast tumors. We found that dual PARP-1/PARP-2-deficiency in T cells promotes tumor growth while single deficiency of each protein limited tumor progression. Analysis of tumor-infiltrating cells in dual PARP-1/PARP-2-deficiency host-mice revealed a global change in immunological profile and impaired recruitment and activation of T cells. Conversely, single PARP-1 and PARP-2-deficiency tends to produce an environment with an active and partially upregulated immune response. Our findings pinpoint opposite effects of single and dual PARP-1 and PARP-2-deficiency in modulating the antitumor response with an impact on tumor progression, and will have implications for the development of more selective PARP-centered therapies.


Assuntos
Carcinogênese/imunologia , Neoplasias Mamárias Experimentais/imunologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Linfócitos T/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral/transplante , Progressão da Doença , Feminino , Humanos , Imunidade Celular , Glândulas Mamárias Humanas/imunologia , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Linfócitos T/metabolismo , Evasão Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
6.
Infect Immun ; 77(2): 714-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015258

RESUMO

Airway epithelial cells act as the first barrier against pathogens. These cells recognize conserved structural motifs expressed by microbial pathogens via Toll-like receptors (TLRs) expressed on the surface. In contrast to the level of expression in lymphoid cells, the level of expression of TLR2 and TLR4 in airway epithelial cells is low under physiological conditions. Here we explored whether Klebsiella pneumoniae upregulates the expression of TLRs in human airway epithelial cells. We found that the expression of TLR2 and TLR4 by A549 cells and human primary airway cells was upregulated upon infection with K. pneumoniae. The increased expression of TLRs resulted in enhancement of the cellular response upon stimulation with Pam3CSK4 and lipopolysaccharide, which are TLR2 and TLR4 agonists, respectively. Klebsiella-dependent upregulation of TLR expression occurred via a positive IkappaBalpha-dependent NF-kappaBeta pathway and via negative p38 and p44/42 mitogen-activated protein kinase-dependent pathways. We showed that Klebsiella-induced TLR2 and TLR4 upregulation was dependent on TLR activation. An isogenic capsule polysaccharide (CPS) mutant did not increase TLR2 and TLR4 expression. Purified CPS upregulated TLR2 and TLR4 expression, and polymyxin B did not abrogate CPS-induced TLR upregulation. Although no proteins were detected in the CPS preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and colloidal gold staining, we could not rule out the possibility that traces of protein in our CPS preparation could have been responsible, at least in part, for the TLR upregulation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Klebsiella pneumoniae/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Linhagem Celular Tumoral , Humanos , Quinase I-kappa B/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Sistema Respiratório/citologia , Transdução de Sinais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno
7.
Cell Death Differ ; 26(12): 2667-2681, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30996287

RESUMO

Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 regulate the function of various DNA-interacting proteins by transferring ADP-ribose emerging from catalytic cleavage of cellular ß-NAD+. Hence, mice lacking PARP-1 or PARP-2 show DNA perturbations ranging from altered DNA integrity to impaired DNA repair. These effects stem from the central role that PARP-1 and PARP-2 have on the cellular response to DNA damage. Failure to mount a proper response culminates in cell death. Accordingly, PARP inhibitors are emerging as promising drugs in cancer therapy. However, the full impact of these inhibitors on immunity, including B-cell antibody production, remains elusive. Given that mice carrying dual PARP-1 and PARP-2 deficiency develop early embryonic lethality, we crossed PARP-1-deficient mice with mice carrying a B-cell-conditional PARP-2 gene deletion. We found that the resulting dually PARP-1 and PARP-2-deficient mice had perturbed bone-marrow B-cell development as well as profound peripheral depletion of transitional and follicular but not marginal zone B-cells. Of note, bone-marrow B-cell progenitors and peripheral mature B-cells were conserved in mice carrying either PARP-1 or PARP-2 deficiency. In dually PARP-1 and PARP-2-deficient mice, B-cell lymphopenia was associated with increased DNA damage and accentuated death in actively proliferating B-cells. Moreover, dual PARP-1 and PARP-2 deficiency impaired antibody responses to T-independent carbohydrate but not to T-dependent protein antigens. Notwithstanding the pivotal role of PARP-1 and PARP-2 in DNA repair, combined PARP-1 and PARP-2 deficiency did not perturb the DNA-editing processes required for the generation of a protective antibody repertoire, including Ig V(D)J gene recombination and IgM-to-IgG class switching. These findings provide key information as to the potential impact of PARP inhibitors on humoral immunity, which will facilitate the development of safer PARP-targeting regimens against cancer.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Rearranjo Gênico , Genes de Imunoglobulinas , Humanos , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética
8.
Sci Rep ; 7: 41962, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181505

RESUMO

The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.


Assuntos
Linfoma de Células T/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Linfócitos T/imunologia , Animais , Morte Celular , Células Cultivadas , Dano ao DNA , Linfoma de Células T/imunologia , Linfoma de Células T/patologia , Camundongos , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerases/deficiência
9.
Am J Cancer Res ; 6(9): 1842-1863, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725894

RESUMO

Poly(ADP-ribosyl)ation (PARylation) is a widespread and highly conserved post-translational modification catalysed by a large family of enzymes called poly(ADP-ribose) polymerases (PARPs). PARylation plays an essential role in various cardinal processes of cellular physiology and recent approvals and breakthrough therapy designations for PARP inhibitors in cancer therapy have sparked great interest in pharmacological targeting of PARP proteins. Although, many PARP inhibitors have been developed, existing compounds display promiscuous inhibition across the PARP superfamily which could lead to unwanted off-target effects. Thus the prospect of isoform-selective inhibition is being increasingly explored and research is now focusing on understanding specific roles of PARP family members. PARP-2, alongside PARP-1 and PARP-3 are the only known DNA damage-dependent PARPs and play critical roles in the DNA damage response, DNA metabolism and chromatin architecture. However, growing evidence shows that PARP-2 plays specific and diverse regulatory roles in cellular physiology, ranging from genomic stability and epigenetics to proliferative signalling and inflammation. The emerging network of PARP-2 target proteins has uncovered wide-ranging functions of the molecule in many cellular processes commonly dysregulated in carcinogenesis. Here, we review novel PARP-2-specific functions in the hallmarks of cancer and consider the implications for the development of isoform-selective inhibitors in chemotherapy. By considering the roles of PARP-2 through the lens of tumorigenesis, we propose PARP-2-selective inhibition as a potentially multipronged attack on cancer physiology.

10.
Front Physiol ; 6: 383, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733877

RESUMO

Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis foundations and overall background may not be fully understood, leading to misinterpretation of analysis results. This review attempts to comprise the fundamental knowledge to take into consideration when using pathway analysis as a hypothesis generation tool. We discuss the key elements that are part of these methodologies, their capabilities and current deficiencies. We also present an overview of current and all-time popular methods, highlighting different classes across them. In doing so, we show the exploding diversity of methods that pathway analysis encompasses, point out commonly overlooked caveats, and direct attention to a potential new class of methods that attempt to zoom the analysis scope to the sample scale.

11.
Antimicrob Agents Chemother ; 50(7): 2361-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16801413

RESUMO

The treatment of infections caused by bacteria resistant to the vast majority of antibiotics is a challenge worldwide. Antimicrobial peptides (APs) make up the front line of defense in those areas exposed to microorganisms, and there is intensive research to explore their use as new antibacterial agents. On the other hand, it is known that subinhibitory concentrations of antibiotics affect the expression of numerous bacterial traits. In this work we evaluated whether treatment of bacteria with subinhibitory concentrations of quinolones may alter the sensitivity to APs. A 1-h treatment of Klebsiella pneumoniae with 0.25 x the MIC of ciprofloxacin rendered bacteria more sensitive to polymyxins B and E, human neutrophil defensin 1, and beta-defensin 1. Levofloxacin and nalidixic acid at 0.25 x the MICs also increased the sensitivity of K. pneumoniae to polymyxin B, whereas gentamicin and ceftazidime at 0.25 x the MICs did not have such an effect. Ciprofloxacin also increased the sensitivities of K. pneumoniae ciprofloxacin-resistant strains to polymyxin B. Two other pathogens, Pseudomonas aeruginosa and Haemophilus influenzae, also became more sensitive to polymyxins B and E after treatment with 0.25 x the MIC of ciprofloxacin. Incubation with ciprofloxacin did not alter the expression of the K. pneumoniae loci involved in resistance to APs. A 1-N-phenyl-naphthylamine assay showed that ciprofloxacin and levofloxacin increased the permeabilities of the K. pneumoniae and P. aeruginosa outer membranes, while divalent cations antagonized this action. Finally, we demonstrated that ciprofloxacin and levofloxacin increased the binding of APs to the outer membrane by using dansylated polymyxin B.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Quinolonas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Humanos , Levofloxacino , Testes de Sensibilidade Microbiana , Ofloxacino/farmacologia
12.
Microbiology (Reading) ; 152(Pt 2): 555-566, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16436443

RESUMO

The means by which airway epithelial cells sense a bacterial infection and which intracellular signalling pathways are activated upon infection are poorly understood. A549 cells and human primary airway cells (NHBE) were used to investigate the response to infection with Klebsiella pneumoniae. Infection of A549 and NHBE with K. pneumoniae 52K10, a capsule polysaccharide (CPS) mutant, increased the surface levels of ICAM-1 and caused the release of IL-8. By contrast, the wild-type strain did not elicit these responses. Consistent with a functional role for these responses, there was a correlation between ICAM-1 levels and the number of adherent leukocytes on the epithelial cell surface. In addition, treatment of neutrophils with IL-8 enhanced their ability to kill K. pneumoniae. Strain 52K10 was internalized by A549 cells more efficiently than the wild-type, and when infections with 52K10 were performed in the presence of cytochalasin D the inflammatory response was abrogated. These findings suggest that cellular activation is mediated by bacterial internalization and that CPS prevents the activation through the blockage of bacterial adhesion and uptake. Collectively, the results indicate that bacterial internalization by airway epithelial cells could be the triggering signal for the activation of the innate immune system of the airway. Infection of A549 cells by 52K10 was shown to trigger the nuclear translocation of NF-kappaB. Evidence is presented showing that 52K10 activated IL-8 production through Toll-like receptor (TLR) 2 and TLR4 pathways and that A549 cells could use soluble CD14 as TLR co-receptor.


Assuntos
Células Epiteliais/microbiologia , Klebsiella pneumoniae/metabolismo , Polissacarídeos/metabolismo , Sistema Respiratório/efeitos dos fármacos , Transdução de Sinais/fisiologia , Cápsulas , Humanos , Inflamação/etiologia , Molécula 1 de Adesão Intercelular/metabolismo , Klebsiella pneumoniae/fisiologia , Polissacarídeos/farmacologia , Sistema Respiratório/citologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Infect Immun ; 72(12): 7107-14, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557634

RESUMO

The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, beta-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Cápsulas Bacterianas/fisiologia , Klebsiella pneumoniae/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Farmacorresistência Bacteriana , Lactoferrina/farmacologia , Polimixina B/farmacologia , Protaminas/farmacologia , beta-Defensinas/farmacologia
14.
Arq. bras. oftalmol ; 52(4): 91-6, 1989. tab
Artigo em Português | LILACS | ID: lil-79999

RESUMO

Dois projetos, um no Brasil e outro no Peru, foram elaborados para proporcionar cirurgia para todos os casos de cegueira por catarata vivendo em um área definida. A triagem domiciliar de acuidade visual foi aceita por três quartos da populaçäo enumerada com 50 anos ou mais. Aqueles com baixa acuidade visual bilateral foram encaminhados para um posto de saúde comunitário para exame oftalmológico. Dentre os diagnósticados como cegos bilaterais (AV menor ou igual a 20/200), compreendendo 5% da populaçäo triada, dois terços eram devido a catarata. Por causa de outras patologias oculares e más condiçöes gerais de saúde, a cirurgia näo foi indicada em 30% a 50% dos casos. Dois terços daqueles com indicaçäo para cirurgia ambulatorial aceitaram cirurgia. Foram feitas tentativas para motivar os casos de recusa, sempre sem sucesso. A idade média dos que aceitaram e dos que recusaram era ao redor de 75 anos. Os casos já afácicos encontrados eram de 7 a 8 anos mais jovens. A acuidade visual no seguimento pós-operatório foi menor ou igual a 20/50 para metade dos operados. Um número significativo de casos tinha degeneraçäo macular senil ou outras causas de baixa visäo näo detectados previamente


Assuntos
Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Cegueira/etiologia , Catarata/complicações , Brasil , Extração de Catarata , Peru , Cuidados Pós-Operatórios , Fatores Socioeconômicos , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA