Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 605(7909): 357-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508654

RESUMO

The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.


Assuntos
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinases , Proteólise , Fase S , Animais , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo
2.
Mol Cell ; 73(3): 562-573.e3, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595439

RESUMO

Across eukaryotes, disruption of DNA replication causes an S phase checkpoint response, which regulates multiple processes, including inhibition of replication initiation and fork stabilization. How these events are coordinated remains poorly understood. Here, we show that the replicative helicase component Cdc45 targets the checkpoint kinase Rad53 to distinct replication complexes in the budding yeast Saccharomyces cerevisiae. Rad53 binds to forkhead-associated (FHA) interaction motifs in an unstructured loop region of Cdc45, which is phosphorylated by Rad53 itself, and this interaction is necessary for the inhibition of origin firing through Sld3. Cdc45 also recruits Rad53 to stalled replication forks, which we demonstrate is important for the response to replication stress. Finally, we show that a Cdc45 mutation found in patients with Meier-Gorlin syndrome disrupts the functional interaction with Rad53 in yeast. Together, we present a single mechanism by which a checkpoint kinase targets replication initiation and elongation complexes, which may be relevant to human disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Microtia Congênita/enzimologia , Microtia Congênita/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/genética , Humanos , Micrognatismo/enzimologia , Micrognatismo/genética , Mutação , Proteínas Nucleares/genética , Patela/anormalidades , Patela/enzimologia , Fosforilação , Ligação Proteica , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
3.
Cytotherapy ; 15(6): 690-702, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23522867

RESUMO

BACKGROUND AIMS: Adipose tissue-derived mesenchymal stromal cells (MSCs) have a higher capacity for proliferation and differentiation compared with other cell lineages. Although distraction osteogenesis is the most important therapy for treating bone defects, this treatment is restricted in many situations. The aim of this study was to examine the therapeutic potential of adipose tissue-derived MSCs and osteoblasts differentiated from adipose tissue-derived MSCs in the treatment of bone defects. METHODS: Bone defects were produced in the tibias of New Zealand rabbits that had previously undergone adipose tissue extraction. Tibial osteotomy was performed, and a distractor was placed on the right leg of the rabbits. The rabbits were placed in control (group I), stem cell (group II) and osteoblast-differentiated stem cell (group III) treatment groups. The rabbits were sacrificed, and the defect area was evaluated by radiologic, biomechanical and histopathologic tests to examine the therapeutic effects of adipose tissue-derived MSCs. RESULTS: Radiologic analyses revealed that callus density and the ossification rate increased in group III compared with group I and group II. In biomechanical tests, the highest ossification rate was observed in group III. Histopathologic studies showed that the quality of newly formed bone and the number of cells active in bone formation were significantly higher in group III rabbits compared with group I and group II rabbits. CONCLUSIONS: These data reveal that osteoblasts differentiated from adipose tissue-derived MSCs shorten the consolidation period of distraction osteogenesis. Stem cells could be used as an effective treatment for bone defects.


Assuntos
Tecido Adiposo/citologia , Osso e Ossos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Regeneração Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/lesões , Osso e Ossos/patologia , Diferenciação Celular , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese por Distração , Coelhos , Radiografia
4.
Wellcome Open Res ; 8: 327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766847

RESUMO

Background: In eukaryotes, replication stress activates a checkpoint response, which facilitates genome duplication by stabilising the replisome. How the checkpoint kinases regulate the replisome remains poorly understood. The aim of this study is to identify new targets of checkpoint kinases within the replisome during replication stress. Methods: Here we use an unbiased biotin proximity-ligation approach in Saccharomyces cerevisiae to identify new interactors and substrates of the checkpoint kinase Rad53 in vivo. Results: From this screen, we identified the replication initiation factor Sld7 as a Rad53 substrate, and Pol1, the catalytic subunit of polymerase a, as a Rad53-interactor. We showed that CDK phosphorylation of Pol1 mediates its interaction with Rad53. Combined with other interactions between Rad53 and the replisome, this Rad53-Pol1 interaction is important for viability and replisome progression during replication stress. Conclusions: Together, we explain how the interactions of Rad53 with the replisome are controlled by both replication stress and the cell cycle, and why these interactions might be important for coordinating the stabilisation of both the leading and lagging strand machineries.

5.
Elife ; 102021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399537

RESUMO

Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the 'S-phase checkpoint' with implications for understanding checkpoint function in cancers that lack cell cycle controls.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Crit Rev Oncol Hematol ; 81(3): 275-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21612942

RESUMO

Autophagy is a physiological process in which cellular components are degraded by the lysosomal machinery. Thereby, organelles are recycled and monomers are produced in order to maintain energy production. Current studies indicate autophagy might suppress or augment survival of cancer cells. Therefore, by elucidating the role of autophagy in cancer pathogenesis, novel therapeutic intervention points may be revealed. Leukemia therapy has advanced in recent years; but a definitive cure is still lacking. Since autophagy often is deregulated in this particular type of cancer, it is clear that future findings will have clinical implications. This review will discuss the current knowledge of autophagy in blood cancers.


Assuntos
Autofagia , Metabolismo Energético , Leucemia/metabolismo , Lisossomos/metabolismo , Animais , Sobrevivência Celular , Humanos , Leucemia/imunologia , Leucemia/terapia , Lisossomos/imunologia
7.
Anticancer Res ; 32(7): 2673-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22753725

RESUMO

AIM: To examine the antiproliferative and apoptotic effects of resveratrol on imatinib-sensitive and imatinib-resistant K562 chronic myeloid leukemia cells. MATERIALS AND METHODS: Antiproliferative effects of resveratrol were determined by the 3-Bis[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide inner salt (XTT) cell proliferation assay. Apoptotic effects of resveratrol on sensitive K562 and resistant K562/IMA-3 cells were determined through changes in caspase-3 activity, loss of mitochondrial membrane potential (MMP), and apoptosis by annexin V-(FITC). RESULTS: The concentrations of resveratrol that inhibited cell growth by 50% (IC(50)) were calculated as 85 and 122 µM for K562 and K562/IMA-3 cells, respectively. There were 1.91-, 7.42- and 14.73-fold increases in loss of MMP in K562 cells treated with 10, 50, and 100 µM resveratrol, respectively. The same concentrations of resveratrol resulted in 2.21-, 3.30- and 7.65-fold increases in loss of MMP in K562/IMA-3 cells. Caspase-3 activity increased 1.04-, 2.77- and 4.8-fold in K562 and 1.02-, 1.41- and 3.46-fold in K562/IMA-3 cells in response to the same concentrations of resveratrol, respectively. Apoptosis was induced in 58.7%- and 43.3% of K562 and K562/IMA-3 cells, respectively, in response to 100 µM resveratrol. CONCLUSION: Taken together these results may suggest potential use of resveratrol in CML, as well as in patients with primary and/or acquired resistance to imatinib.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Pirimidinas/farmacologia , Estilbenos/farmacologia , Benzamidas , Caspase 7/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Resveratrol
8.
Hematology ; 16(2): 95-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21418740

RESUMO

Imatinib is a chemotherapeutic drug used for the treatment of chronic myeloid leukemia (CML). Recent data showed imatinib-induced cell death in various types of cancers. Autophagy is the physiological process in which cellular components are broken down by the lysosomal activation. In this study, we aimed to examine the effects of imatinib on autophagy in addition to apoptosis in CML cells. Results suggested that imatinib induces autophagy in CML cells through inducing over-expression of BECLIN-1 and ATG5 genes with the statistical significance. Our results demonstrated that autophagy might be involved in imatinib-induced cell death.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Benzamidas , Linhagem Celular Tumoral , Humanos , Mesilato de Imatinib , Immunoblotting , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Hematology ; 15(1): 33-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20132660

RESUMO

Chronic myeloid leukemia (CML) is a hematological malignancy characterized by high levels of immature white blood cells. CML is caused by the translocation between chromosomes 9 and 22 (which results in the formation of the Philadelphia chromosome) creating BCR-ABL fusion protein. Imatinib and nilotinib are chemotherapeutic drugs which specifically bind to the BCR-ABL and inhibit cancer cells. Nilotinib is more effective in this respect than imatinib. We have shown that nilotinib induces apoptosis in imatinib-resistant K562 CML cells which have the wild-type BCR-ABL fusion gene almost to the same extent as it does in the parental sensitive cells by the increase in caspase-3 enzyme activity and the decrease in mitochondrial membrane potential. This effect of nilotinib, even in low concentrations, may indicate the efficacy of the usage of nilotinib in imatinib-resistant CML with less risk of undesired cytotoxic effects in the remaining cells of the body.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Células K562/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Sequência de Bases , Benzamidas , Caspase 3/metabolismo , Divisão Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib , Concentração Inibidora 50 , Células K562/citologia , Células K562/enzimologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA