RESUMO
Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.
Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Animais , Camundongos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Corpo Estriado/metabolismo , Diferenciação Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de DoençasRESUMO
In the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.k.a. Ikaros) gene plays crucial roles in modulating the function and maturation of circulating monocytes and lymphocytes, but whether it regulates microglial functions and states is unknown. Using genetic tools, here we describe that Ikzf1 is specifically expressed in the adult microglia in brain regions such as cortex and hippocampus. By characterizing the Ikzf1 deficient mice, we observed that these mice displayed spatial learning deficits, impaired hippocampal CA3-CA1 long-term potentiation, and decreased spine density in pyramidal neurons of the CA1, which correlates with an increased expression of synaptic markers within microglia. Additionally, these Ikzf1 deficient microglia exhibited a severe abnormal morphology in the hippocampus, which is accompanied by astrogliosis, an aberrant composition of the inflammasome, and an altered expression of disease-associated microglia molecules. Interestingly, the lack of Ikzf1 induced changes on histone 3 acetylation and methylation levels in the hippocampus. Since the lack of Ikzf1 in mice appears to induce the internalization of synaptic markers within microglia, and severe gliosis we then analyzed hippocampal Ikzf1 levels in several models of neurological disorders. Ikzf1 levels were increased in the hippocampus of these neurological models, as well as in postmortem hippocampal samples from Alzheimer's disease patients. Finally, over-expressing Ikzf1 in cultured microglia made these cells hyporeactive upon treatment with lipopolysaccharide, and less phagocytic compared to control microglia. Altogether, these results suggest that altered Ikzf1 levels in the adult hippocampus are sufficient to induce synaptic plasticity and memory deficits via altering microglial state and function.
Assuntos
Hipocampo , Microglia , Camundongos , Animais , Microglia/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Inflamação/metabolismoRESUMO
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapiaRESUMO
We evaluated the administration of ARI-0001 cells (chimeric antigen receptor T cells targeting CD19) in adult and pediatric patients with relapsed/refractory CD19+ malignancies. Patients received cyclophosphamide and fludarabine followed by ARI-0001 cells at a dose of 0.4-5 × 106 ARI-0001 cells/kg, initially as a single dose and later split into 3 fractions (10%, 30%, and 60%) with full administration depending on the absence of cytokine release syndrome (CRS). 58 patients were included, of which 47 received therapy: 38 with acute lymphoblastic leukemia (ALL), 8 with non-Hodgkin's lymphoma, and 1 with chronic lymphocytic leukemia. In patients with ALL, grade ≥3 CRS was observed in 13.2% (26.7% before versus 4.3% after the amendment), grade ≥3 neurotoxicity was observed in 2.6%, and the procedure-related mortality was 7.9% at day +100, with no procedure-related deaths after the amendment. The measurable residual disease-negative complete response rate was 71.1% at day +100. Progression-free survival was 47% (95% IC 27%-67%) at 1 year: 51.3% before versus 39.5% after the amendment. Overall survival was 68.6% (95% IC 49.2%-88%) at 1 year. In conclusion, the administration of ARI-0001 cells provided safety and efficacy results that are comparable with other academic or commercially available products. This trial was registered as ClinicalTrials.gov: NCT03144583.
Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/patologia , Recidiva , Linfócitos T/metabolismoRESUMO
Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He-/- mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development.
Assuntos
Corpo Estriado/citologia , Proteínas de Ligação a DNA/metabolismo , Globo Pálido/citologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Pontos de Checagem do Ciclo Celular , Morte Celular , Proliferação de Células , Ciclina E/metabolismo , Fase G1 , Camundongos Knockout , Atividade Motora , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Fenótipo , Fase SRESUMO
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio KCNQ1/metabolismo , Neurônios/metabolismo , Regulação para Cima/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , RNA Mensageiro/metabolismoRESUMO
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
Assuntos
Astrócitos/metabolismo , Cloridrato de Fingolimode/farmacologia , Hipocampo/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Cloridrato de Fingolimode/administração & dosagem , Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Doença de Huntington/genética , Doença de Huntington/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , RNA Mensageiro/genética , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural , Regulação para CimaRESUMO
BACKGROUND: CCAAT/enhancer binding protein ß (C/EBPß) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPß show protection against excitotoxic and ischemic CNS damage, but the involvement in this neuroprotective effect of the various C/EBPß-expressing cell types is not solved. Since C/EBPß-deficient microglia show attenuated neurotoxicity in culture, we hypothesized that specific C/EBPß deficiency in microglia could be neuroprotective in vivo. In this study, we have tested this hypothesis by generating mice with myeloid C/EBPß deficiency. METHODS: Mice with myeloid C/EBPß deficiency were generated by crossing LysMCre and C/EBPßfl/fl mice. Primary microglial cultures from C/EBPßfl/fl and LysMCre-C/EBPßfl/fl mice were treated with lipopolysaccharide ± interferon γ (IFNγ) for 6 h, and gene expression was analyzed by RNA sequencing. Gene expression and C/EBPß deletion were analyzed in vivo in microglia isolated from the brains of C/EBPßfl/fl and LysMCre-C/EBPßfl/fl mice treated systemically with lipolysaccharide or vehicle. Mice of LysMCre-C/EBPßfl/fl or control genotypes were subjected to experimental autoimmune encephalitis and analyzed for clinical signs for 52 days. One- or two-way ANOVA or Kruskal-Wallis with their appropriate post hoc tests were used. RESULTS: LysMCre-C/EBPßfl/fl mice showed an efficiency of C/EBPß deletion in microglia of 100 and 90% in vitro and in vivo, respectively. These mice were devoid of female infertility, perinatal mortality and reduced lifespan that are associated to full C/EBPß deficiency. Transcriptomic analysis of C/EBPß-deficient primary microglia revealed C/EBPß-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. In vivo, microglial expression of the pro-inflammatory genes Cybb, Ptges, Il23a, Tnf and Csf3 induced by systemic lipopolysaccharide injection was also blunted by C/EBPß deletion. CNS expression of C/EBPß was upregulated in experimental autoimmune encephalitis and in multiple sclerosis samples. Finally, LysMCre-C/EBPßfl/fl mice showed robust attenuation of clinical signs in experimental autoimmune encephalitis. CONCLUSION: This study provides new data that support a central role for C/EBPß in the biology of activated microglia, and it offers proof of concept for the therapeutic potential of microglial C/EBPß inhibition in multiple sclerosis.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/deficiência , Encefalomielite Autoimune Experimental/patologia , Microglia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Recém-Nascidos , Ontologias Biológicas , Proteína beta Intensificadora de Ligação a CCAAT/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/terapia , Feminino , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/toxicidade , Fagocitose/efeitos dos fármacos , Fagocitose/genéticaRESUMO
Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements. Employing these media, this new protocol synchronized neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials; moreover, they exhibited augmented: 1) spontaneous electrical activity; 2) regenerative induced action potential train activity; 3) Na(+) current availability, and 4) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAAreceptor phenotype that was demonstrated by Ca(2+) imaging and the ability of GABAAreceptor blockers to evoke seizurogenic network activity in multielectrode array recordings. Furthermore, since this protocol can exploit expanded and frozen prepatterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens.
Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Meios de Cultura/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Western Blotting , Ciclo Celular/fisiologia , Linhagem Celular , Técnicas de Cocultura , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Varredura , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Técnicas de Patch-Clamp , Receptores de GABA-A/metabolismoRESUMO
The initial aim of this study was to generate a transplantable glial tumour model of low-intermediate grade by disaggregation of a spontaneous tumour mass from genetically engineered models (GEM). This should result in an increased tumour incidence in comparison to GEM animals. An anaplastic oligoastrocytoma (OA) tumour of World Health Organization (WHO) grade III was obtained from a female GEM mouse with the S100ß-v-erbB/inK4a-Arf (+/-) genotype maintained in the C57BL/6 background. The tumour tissue was disaggregated; tumour cells from it were grown in aggregates and stereotactically injected into C57BL/6 mice. Tumour development was followed using Magnetic Resonance Imaging (MRI), while changes in the metabolomics pattern of the masses were evaluated by Magnetic Resonance Spectroscopy/Spectroscopic Imaging (MRS/MRSI). Final tumour grade was evaluated by histopathological analysis. The total number of tumours generated from GEM cells from disaggregated tumour (CDT) was 67 with up to 100 % penetrance, as compared to 16 % in the local GEM model, with an average survival time of 66 ± 55 days, up to 4.3-fold significantly higher than the standard GL261 glioblastoma (GBM) tumour model. Tumours produced by transplantation of cells freshly obtained from disaggregated GEM tumour were diagnosed as WHO grade III anaplastic oligodendroglioma (ODG) and OA, while tumours produced from a previously frozen sample were diagnosed as WHO grade IV GBM. We successfully grew CDT and generated tumours from a grade III GEM glial tumour. Freezing and cell culture protocols produced progression to grade IV GBM, which makes the developed transplantable model qualify as potential secondary GBM model in mice.
Assuntos
Animais Geneticamente Modificados , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL/genética , Oligodendroglioma/patologia , Oligodendroglioma/fisiopatologia , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Gradação de Tumores , Oligodendroglioma/diagnóstico por imagem , Análise de SobrevidaRESUMO
Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of a CAG repeat encoding a polyglutamine tract in the huntingtin (Htt) protein. The mutation leads to neuronal death through mechanisms which are still unknown. One hypothesis is that mitochondrial defects may play a key role. In support of this, the activity of mitochondrial complex II (C-II) is preferentially reduced in the striatum of HD patients. Here, we studied C-II expression in different genetic models of HD expressing N-terminal fragments of mutant Htt (mHtt). Western blot analysis showed that the expression of the 30 kDa Iron-Sulfur (Ip) subunit of C-II was significantly reduced in the striatum of the R6/1 transgenic mice, while the levels of the FAD containing catalytic 70 kDa subunit (Fp) were not significantly changed. Blue native gel analysis showed that the assembly of C-II in mitochondria was altered early in N171-82Q transgenic mice. Early loco-regional reduction in C-II activity and Ip protein expression was also demonstrated in a rat model of HD using intrastriatal injection of lentiviral vectors encoding mHtt. Infection of the rat striatum with a lentiviral vector coding the C-II Ip or Fp subunits induced a significant overexpression of these proteins that led to significant neuroprotection of striatal neurons against mHtt neurotoxicity. These results obtained in vivo support the hypothesis that structural and functional alterations of C-II induced by mHtt may play a critical role in the degeneration of striatal neurons in HD and that mitochondrial-targeted therapies may be useful in its treatment.
Assuntos
Corpo Estriado/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Células Cultivadas , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Complexo II de Transporte de Elétrons/genética , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Proteínas Mutantes/metabolismo , Mutação , Neurônios/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Activating transcription factor 5 (ATF5) is a basic-leucine-zipper transcription factor of the ATF/CREB family. The Atf5 gene generates two transcripts, Atf5α and Atf5ß, of which Atf5α is known to be selectively translated upon endoplasmic reticulum stress response in non-neuronal cells. ATF5 is highly expressed in the developing brain where it modulates proliferation of neural progenitor cells. These cells show a high level of ATF5 that has to decrease to allow them to differentiate into mature neurons or glial cells. This has led to the extended notion that differentiated neural cells do not express ATF5 unless they undergo tumourigenic transformation. However, no systematic analysis of the distribution of ATF5 in adult brain or of its potential role in neuronal endoplasmic reticulum stress response has been reported. By immunostaining here we confirm highest ATF5 levels in neuroprogenitor cells of the embryonic and adult subventricular zone but also found ATF5 in a large variety of neurons in adult mouse brain. By combining Atf5 in situ hybridization and immunohistochemistry for the neuronal marker NeuN we further confirmed Atf5 messenger RNA in adult mouse neurons. Quantitative reverse transcriptase polymerase chain reaction demonstrated that Atf5α is the most abundant transcript in adult mouse encephalon and injection of the endoplasmic reticulum stress inducer tunicamycin into adult mouse brain increased neuronal ATF5 levels. Accordingly, ATF5 levels increased in hippocampal neurons of a mouse model of status epilepticus triggered by intra-amygdala injection of kainic acid, which leads to abnormal hippocampal neuronal activity and endoplasmic reticulum stress. Interestingly, ATF5 upregulation occurred mainly in hippocampal neuronal fields that do not undergo apoptosis in this status epilepticus model such as CA1 and dentate gyrus, thus suggesting a neuroprotective role. This was confirmed in a primary neuronal culture model in which ATF5 overexpression resulted in decreased endoplasmic reticulum stress-induced apoptosis and the opposite result was achieved by Atf5 RNA interference. Furthermore, in vivo administration of the eIF2α phosphatase inhibitor salubrinal resulted in increased ATF5 hippocampal levels and attenuated status epilepticus-induced neuronal death in the vulnerable CA3 subfield. In good agreement with the neuroprotective effect of increased ATF5, we found that apoptosis-resistant epileptogenic foci from patients with temporal lobe epilepsy also showed increased levels of ATF5. Thus, our results demonstrate that adult neurons express ATF5 and that they increase its levels upon endoplasmic reticulum stress as a pro-survival mechanism, thus opening a new field for neuroprotective strategies focused on ATF5 modulation.
Assuntos
Fatores Ativadores da Transcrição/biossíntese , Estresse do Retículo Endoplasmático/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cinamatos/administração & dosagem , Cinamatos/farmacologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estado Epiléptico/tratamento farmacológico , Tioureia/administração & dosagem , Tioureia/análogos & derivados , Tioureia/farmacologiaRESUMO
Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer's disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.
RESUMO
Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge. Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture. Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of ß-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.
RESUMO
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Assuntos
Células-Tronco Pluripotentes , Técnicas de Cultura de Células/métodos , Hibridização Genômica Comparativa , Instabilidade Genômica , Genômica , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
BACKGROUND: When genes responsible for normal embryonic development are abnormally expressed in adults, it can lead to tumor development. This can suggest that the same mechanism that controls embryonic differentiation can also control tumor differentiation. We hypothesize that the malignant phenotype of lung cancer cells could acquire benign characteristics when in contact with an embryonic lung microenvironment. We cultured two lung cancer cell lines in embryonic lung mesenchyme-conditioned medium and evaluated morphological, functional and molecular changes. METHODS: The human embryonic mesenchymal lung-conditioned medium (hEML-CM) was obtained by culturing lung cells from embryos in the pseudoglandular stage of development. The NSCLC cell lines A549 and H1299 we cultured in the hEML-CM and in a tumor-conditioned medium. Morphological changes were analyzed with optical and transmission electron microscopy. To evaluate the functional effect of conditioned medium in tumor cells, we analyzed cell proliferation, migration, colony formation capacity in 2D and 3D and in vivo tumor growth capacity. The expression of the pluripotency genes OSKM, the adenocarcinoma marker NKX2-1, the lung surfactant proteins SFTP, the myofibroblast marker MYH and DNMT3A/3B was analyzed with qRT-PCR and the presence of the myofibroblast markers vimentin and α-SMA with immunofluorescence. Transcriptomic analysis was performed using Affymetrix arrays. RESULTS: The A549 and H1299 cells cultured in hEML-CM lost their epithelial morphology, acquired mesodermal characteristics, and decreased proliferation, migration, and colony formation capacity in 2D and 3D, as well as reduced its capacity to growth in vivo. The expression of OSKM, NKX2-1 and SFTP decreased, while that of DNMT3A/3B, vimentin, α-SMA and MYH increased. Distant matrix analysis based on transcriptomic profile showed that conditioned cells were closer to myoblast and human lung fibroblast than to normal epithelial immortalized lung cells. A total of 1631 for A549 and 866 for H1299 differentially expressed genes between control and conditioned cells were identified. CONCLUSIONS: To the best of our knowledge, this is the first study to report that stimuli from the embryonic lung can modulate the malignant phenotype of lung cancer cells, control their growth capacity and activate their differentiation into myofibroblasts. These findings could lead to new strategies for lung cancer management.
Assuntos
Adenocarcinoma de Pulmão/genética , Células-Tronco Embrionárias Humanas/metabolismo , Neoplasias Pulmonares/genética , Miofibroblastos/metabolismo , Adenocarcinoma de Pulmão/fisiopatologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Camundongos Nus , FenótipoRESUMO
Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations.
Assuntos
Transtorno do Espectro Autista , Neocórtex , Animais , Transtorno do Espectro Autista/genética , Córtex Cerebral/metabolismo , Humanos , Camundongos , Neocórtex/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Recent findings suggest that altered cholesterol homeostasis may contribute to the pathophysiology of Huntington's disease (HD). To understand the underlying mechanisms, here we used a combination of two-photon microscopy, epifluorescence, and biochemical methods to visualize and quantify lipid distribution in cell cultures expressing mutant huntingtin. Such expression promotes lipid imbalance, and cholesterol accumulation in cellular and murine models and in HD-affected human brains. Interestingly, cells expressing mutant huntingtin also showed higher content of ordered domains in their plasma membranes. These findings correlated with high levels of caveolin-1 and glycosphingolipid GM1, two well-defined markers of cholesterol-enriched domains, at the cell surface. In addition, cells expressing mutant huntingtin showed increased localization of NMDA receptors with cholesterol-enriched domains, contributing to increased NMDA receptor susceptibility to excitotoxic insults. Treatment with simvastatin or ß-cyclodextrin, two cholesterol-lowering drugs, reduced the content of ordered domains at the cell surface, which in turn, protected cells against NMDA-mediated excitotoxicity. Taken together, our results indicate that mutant huntingtin produces accumulation of cholesterol and alters its cellular distribution that contributes to NMDA-mediated excitotoxicity. Administration of drugs that recover this effect, such as simvastatin could be beneficial for the treatment of HD.
Assuntos
Colesterol/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , N-Metilaspartato/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Encéfalo/patologia , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , DNA/genética , Imunofluorescência , Homeostase/fisiologia , Humanos , Proteína Huntingtina , Indicadores e Reagentes , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Neostriado/citologia , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Sinvastatina/farmacologia , Transfecção , Triglicerídeos/metabolismo , beta-Ciclodextrinas/farmacologiaRESUMO
The precise mechanism by which mutant huntingtin elicits its toxicity remains unknown. However, synaptic alterations and increased susceptibility to neuronal death are known contributors to Huntington's disease (HD) symptomatology. While decreased metabolism has long been associated with HD, recent findings have surprisingly demonstrated reduced neuronal apoptosis in Caenorhabditis elegans and Drosophila models of HD by drugs that diminish ATP production. Interestingly, extracellular ATP has been recently reported to elicit neuronal death through stimulation of P2X7 receptors. These are ATP-gated cation channels known to modulate neurotransmitter release from neuronal presynaptic terminals and to regulate cytokine production and release from microglia. We hypothesized that alteration in P2X7-mediated calcium permeability may contribute to HD synaptic dysfunction and increased neuronal apoptosis. Using mouse and cellular models of HD, we demonstrate increased P2X7-receptor level and altered P2X7-mediated calcium permeability in somata and terminals of HD neurons. Furthermore, cultured neurons expressing mutant huntingtin showed increased susceptibility to apoptosis triggered by P2X7-receptor stimulation. Finally, in vivo administration of the P2X7-antagonist Brilliant Blue-G (BBG) to HD mice prevented neuronal apoptosis and attenuated body weight loss and motor-coordination deficits. These in vivo data strongly suggest that altered P2X7-receptor level and function contribute to HD pathogenesis and highlight the therapeutic potential of P2X7 receptor antagonists.