Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7772): 108-111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462777

RESUMO

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Assuntos
Mudança Climática/estatística & dados numéricos , Inundações/estatística & dados numéricos , Rios , Mudança Climática/história , Europa (Continente) , Inundações/história , Inundações/prevenção & controle , Mapeamento Geográfico , História do Século XX , História do Século XXI , Chuva , Estações do Ano , Fatores de Tempo
2.
J Environ Manage ; 217: 735-746, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656254

RESUMO

Conducting hydromorphological assessments for evaluating the ecological status of rivers is a key requirement of the Directive 2000/60/EC (Water Framework Directive - WFD) within European Union (EU) Member States. This paper aims at understanding how this requirement was implemented, through an original comparative review of methodologies for rivers' hydromorphological assessment in three EU Member States, which joined the EU at different times, and with many differences in terms of hydrographic features, socio-economic and water management systems: France, Romania, and Croatia. More precisely, the paper aims at identifying and understanding the main principles guiding the hydromorphological assessment methodologies, elements and data used, giving an overview of the results of hydromorphological river status assessment, and concluding on the stage of hydromorphological assessment implementation. France developed numerous methodologies for physical habitat survey since the 1990s and it is currently conducting a rigorous hydromorphological field survey, but it does not yet have any national methodology for rivers' hydromorphological status assessment, nevertheless foreseen for the next cycle of the WFD. Besides, Romania and Croatia have already started the assessment of the hydromorphological status of rivers within the two cycles of the River Basin Management Plans and are making efforts to improve the hydromorphological monitoring activity. The methods generally differ in indicators, data used, and spatial scale of analysis, which makes it difficult to compare the results of the assessments. Despite a common water policy, the methodological dissimilarities seem to be rather usual between EU Member States. Therefore, the standardization of methodologies appears to be necessary, but the current results could be useful for setting priorities for river restoration and for achieving a better status at a national scale.


Assuntos
Monitoramento Ambiental , Rios , Croácia , França , Romênia , Movimentos da Água
3.
Science ; 357(6351): 588-590, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28798129

RESUMO

A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA