RESUMO
Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.
Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Predisposição Genética para Doença , Inflamação/genética , Inflamação/imunologia , Animais , Doenças Autoimunes/metabolismo , Autoimunidade , Modelos Animais de Doenças , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Interleucina-1/metabolismo , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transdução de SinaisRESUMO
Current HLH-2004-based diagnostic criteria for familial hemophagocytic lymphohistiocytosis (FHL) are based on expert opinion. Here we performed a case-control study to test and possibly improve these clinical criteria. We also developed two complementary expert opinion-based diagnostic strategies for FHL in patients with signs/symptoms suggestive of HLH, based on genetic and cellular cytotoxicity assays. The cases (n=366) were children <16 years with verified familial and/or genetic FHL (n=341) or Griscelli syndrome type 2 (GS2) (n=25); 276 from the HLH-94/HLH-2004 databases and 90 from the Italian HLH Registry. All fulfilled the HLH-94/HLH-2004 patient inclusion criteria. Controls were 374 children with systemic-onset juvenile idiopathic arthritis (sJIA) and 329+361 children in two cohorts with febrile infections that could be confused with HLH and sepsis, respectively. To provide complete data sets, multiple imputations were performed. The optimal model, based on the number of diagnostic criteria fulfilled from 17 variables studied, reveled almost similar diagnostic thresholds as the existing criteria, with accuracy 99.1% (sensitivity 97.1%; specificity 99.5%). Notably, assessment of the original HLH-2004 criteria revealed accuracy 97.4% (sensitivity 99.0%; specificity 97.1%). Since cellular cytotoxicity assays here constitute a separate diagnostic strategy, HLH-2004 criteria without NK-cell function was also studied which showed accuracy 99.0% (sensitivity 96.2%; specificity 99.5%). Thus, we conclude that the HLH-2004 criteria (without NK-cell function) have significant validity in their current form when tested against severe infections or sJIA. It is important to exclude underlying malignancies and atypical infections. In addition, complementary cellular and genetic diagnostic guidelines can facilitate necessary confirmation of clinical diagnosis.
RESUMO
BACKGROUND: Cytokine storm syndromes (CSS), including hemophagocytic lymphohistiocytosis (HLH), are increasingly recognized as hyperinflammatory states leading to multi-organ failure and death. Familial HLH (FHL) in infancy results from homozygous genetic defects in perforin-mediated cytolysis by CD8 T-lymphocytes and natural killer (NK) cells. Later onset CSS are frequently associated with heterozygous defects in FHL genes, but genetic etiologies for most are unknown. We identified rare DOCK8 variants in CSS patients. OBJECTIVE: We explore the role of CSS patient-derived DOCK8 mutations on cytolytic activity in NK cells. We further study effects of DOCK8 deficiency in murine models of CSS. METHODS: DOCK8 cDNA from 2 unrelated CSS patients with different missense mutations were introduced into human NK-92 NK cells by foamy virus transduction. NK cell degranulation (CD107a), cytolytic activity against K562 target cells, and interferon-gamma (IFNγ) production were explored by flow cytometry. A third CSS patient DOCK8 mRNA splice acceptor site variant was explored by exon trapping. Dock8-/- mice were assessed for features of CSS (weight loss, splenomegaly, hepatic inflammation, cytopenias, and IFNγ levels) upon challenge with lymphocytic choriomeningitis virus (LCMV) and excess IL-18. RESULTS: Both patient DOCK8 missense mutations decreased cytolytic function in NK cells in a partial dominant-negative fashion in vitro. The patient DOCK8 splice variant disrupted mRNA splicing in vitro. LCMV infection promoted CSS in Dock8-/- mice and interacted with excess IL-18 limiting T-cell numbers while promoting CD8 T-cell hyperactivation. CONCLUSION: Mutations in DOCK8 may contribute to CSS-like hyperinflammatory states by altering cytolytic function in a threshold model of disease.
RESUMO
BACKGROUND: Cytokines are soluble signaling proteins that regulate inflammation and coordinate immune responses. Serum cytokine panels are increasingly used in medical practice, yet our understanding of cytokines as biomarkers for disease remains limited. OBJECTIVE: We sought to analyze real-world single-center use of a multiplexed cytokine panel, correlate its results with diagnosis and severity, and explore its use in pediatric practice. METHODS: A multiplexed cytokine panel, able to return same-day results, was implemented in April 2020 at the Children's Hospital of Philadelphia (Philadelphia, Pa) and its performance was validated for clinical use. Coded patient data were collected using the REDCap database, and correlations between cytokine levels and outcomes of interest were analyzed retrospectively. RESULTS: Cytokine levels correlate with acuity of care, with patients admitted to the pediatric intensive care unit having the highest cytokine values. Patients with familial hemophagocytic lymphohistiocytosis (fHLH) showed prominent peaks in IFN-γ, IL-10, and TNF, whereas patients with sepsis exhibited high IL-6 and IL-8 with relatively modest IFN-γ. Cytokine release syndrome (CRS) after chimeric antigen receptor T-cell therapy often demonstrated pan-panel positivity at peak levels, with a similar pattern as that of fHLH. A ratio of [IFN-γ] + [IL-10]/[IL-6] + [IL-8] levels was able to distinguish fHLH and CRS from severe sepsis. CONCLUSIONS: Cytokine levels correlate with severity of illness and can help differentiate between syndromes that present similarly, including fHLH and CRS compared with sepsis. Cytokine panels can be used as biomarkers to inform diagnosis and management decisions, but significant work remains to dissect complex clinical patterns of disease.
RESUMO
High ferritin is an important and sensitive biomarker for the various forms of hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system at UPMC Children's Hospital where serum ferritin > 1000 ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients. We extracted relevant clinical data; periodically measured serum total IL-18, IL-18 binding protein (IL-18BP), and CXCL9; retrospectively classified patients by etiology into infectious, rheumatic, or immune dysregulation; and subjected a subgroup of samples to a 96-analyte biomarker screen. 180 patients were identified, 30.5% of which had IHF. Maximum ferritin levels were significantly higher in patients with IHF than with either hemoglobinopathy or transplant, and highly elevated total IL-18 levels were distinctive to patients with Stills Disease and/or Macrophage Activation Syndrome (MAS). Multi-analyte analysis showed elevation in proteins associated with cytotoxic lymphocytes in all IHF samples when compared to healthy controls and depression of proteins such as ANGPT1 and VEGFR2 in samples from hyperferritinemic sepsis patients relative to non-sepsis controls. This real-time IFH screen proved feasible and efficient, validated prior observations about the specificity of IL-18, enabled early sample collection from a complex population, suggested a unique vascular biomarker signature in hyperferritinemic sepsis, and expanded our understanding of IHF heterogeneity.
Assuntos
Biomarcadores , Ferritinas , Hiperferritinemia , Interleucina-18 , Linfo-Histiocitose Hemofagocítica , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/sangue , Linfo-Histiocitose Hemofagocítica/imunologia , Biomarcadores/sangue , Feminino , Interleucina-18/sangue , Masculino , Hiperferritinemia/diagnóstico , Hiperferritinemia/sangue , Criança , Ferritinas/sangue , Pré-Escolar , Lactente , Adolescente , Diagnóstico Diferencial , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Quimiocina CXCL9/sangue , Inflamação/diagnóstico , Inflamação/sangue , Inflamação/imunologia , Estudos RetrospectivosRESUMO
OBJECTIVES: To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS: Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS: The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION: PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.
Assuntos
Acne Vulgar , Proteínas Adaptadoras de Transdução de Sinal , Artrite Infecciosa , Proteínas do Citoesqueleto , Interferon gama , Interleucina-18 , Pioderma Gangrenoso , Pirina , Interferon gama/metabolismo , Retroalimentação Fisiológica , Acne Vulgar/genética , Acne Vulgar/metabolismo , Artrite Infecciosa/genética , Artrite Infecciosa/metabolismo , Pioderma Gangrenoso/genética , Pioderma Gangrenoso/metabolismo , Síndrome , Animais , Camundongos , Modelos Animais de Doenças , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Genes Dominantes , Linhagem Celular Tumoral , Humanos , RNA Interferente Pequeno/genética , Inibidores de Janus Quinases/farmacologia , Pirina/metabolismo , Inflamassomos , Interleucina-18/metabolismo , Camundongos KnockoutRESUMO
OBJECTIVE: To assess current treatment in macrophage activation syndrome (MAS) worldwide and to highlight any areas of major heterogeneity of practice. METHODS: A systematic literature search was performed in both Embase and PubMed databases. Paper screening was done by two independent teams based on agreed criteria. Data extraction was standardized following the PICO framework. A panel of experts assessed paper validity, using the Joanna Briggs Institute appraisal tools and category of evidence (CoE) according to EULAR procedure. RESULTS: Fifty-seven papers were finally included (80% retrospective case-series), describing 1148 patients with MAS: 889 systemic juvenile idiopathic arthritis (sJIA), 137 systemic lupus erythematosus (SLE), 69 Kawasaki disease (KD) and 53 other rheumatologic conditions. Fourteen and 11 studies specified data on MAS associated to SLE and KD, respectively. All papers mentioned glucocorticoids (GCs), mostly methylprednisolone and prednisolone (90%); dexamethasone was used in 7% of patients. Ciclosporin was reported in a wide range of patients according to different cohorts. Anakinra was used in 179 MAS patients, with a favourable outcome in 83% of sJIA-MAS. Etoposide was described by 11 studies, mainly as part of HLH-94/04 protocol. Emapalumab was the only medication tested in a clinical trial in 14 sJIA-MAS, with 93% of MAS remission. Ruxolitinib was the most reported JAK-inhibitor in MAS. CONCLUSION: High-dose GCs together with IL-1 and IFNγ inhibitors have shown efficacy in MAS, especially in sJIA-associated MAS. However, global level of evidence on MAS treatment, especially in other conditions, is still poor and requires standardized studies to be confirmed.
RESUMO
Cytokine Storm is a complex and heterogeneous state of life-threatening systemic inflammation and immunopathology. Autoinflammation is a mechanistic category of immune dysregulation wherein immunopathology originates due to poor regulation of innate immunity. The growing family of monogenic Systemic Autoinflammatory Diseases (SAIDs) has been a wellspring for pathogenic insights and proof-of-principle targeted therapeutic interventions. There is surprisingly little overlap between SAID and Cytokine Storm Syndromes, and there is a great deal to be inferred from those SAID that do, and do not, consistently lead to Cytokine Storm. This chapter will summarize how illustrations of the autoinflammatory paradigm have advanced the understanding of human inflammation, including the role of autoinflammation in familial HLH. Next, it will draw from monogenic SAID, both those with strong associations with cytokine storm and those without, to illustrate how the cytokine IL-18 links innate immune dysregulation and cytokine storm.
Assuntos
Síndrome da Liberação de Citocina , Imunidade Inata , Humanos , Síndrome da Liberação de Citocina/imunologia , Interleucina-18/imunologia , Interleucina-18/genética , Inflamação/imunologia , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/genética , Animais , Citocinas/imunologia , Citocinas/metabolismoRESUMO
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Assuntos
Artrite Juvenil , Síndrome da Liberação de Citocina , Humanos , Artrite Juvenil/complicações , Artrite Juvenil/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Síndrome de Ativação Macrofágica/diagnóstico , Síndrome de Ativação Macrofágica/etiologia , Citocinas/metabolismo , CriançaRESUMO
Systemic juvenile idiopathic arthritis associated with interstitial lung disease (SJIA-LD) represents a highly morbid subset of SJIA for which effective therapies are lacking. We report the case of a patient with refractory SJIA-LD who underwent treatment with MAS-825, an investigational bispecific monoclonal antibody targeting IL-1ß and IL-18. MAS-825 treatment was associated with a marked reduction in total IL-18 and free IL-18 in both serum and bronchoalveolar lavage fluid (BAL). Baseline oxygen saturation, exercise tolerance, and quality of life metrics improved after treatment with MAS-825, while pulmonary function testing remained stable. Following treatment, the BAL showed no evidence of pulmonary alveolar proteinosis and inflammatory infiltrates were markedly reduced, reflected by decreased numbers of CD4 T-cells, CD8 T-cells, and macrophages. The patient was able to wean entirely off systemic corticosteroids and other biologics after 10 months of treatment with MAS-825 and experienced no side effects of the drug. This case demonstrates improvement in pulmonary symptoms, lung inflammation, and burden of immunomodulatory therapy after treatment with MAS-825 and suggests that simultaneous targeting of both IL-1ß and IL-18 may be a safe and effective treatment strategy in SJIA-LD.
Assuntos
Artrite Juvenil , Doenças Pulmonares Intersticiais , Síndrome de Ativação Macrofágica , Humanos , Interleucina-18/uso terapêutico , Artrite Juvenil/complicações , Artrite Juvenil/diagnóstico , Artrite Juvenil/tratamento farmacológico , Qualidade de Vida , Síndrome de Ativação Macrofágica/diagnósticoRESUMO
OBJECTIVE: Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS: A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS: The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION: These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.
Assuntos
Linfo-Histiocitose Hemofagocítica , Síndrome de Ativação Macrofágica , Reumatologia , Criança , Adulto , Humanos , Estados Unidos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/etiologia , Síndrome de Ativação Macrofágica/diagnóstico , Síndrome de Ativação Macrofágica/etiologia , Síndrome de Ativação Macrofágica/terapia , ConsensoRESUMO
Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.
Assuntos
Transtornos da Insuficiência da Medula Óssea/patologia , Mutação com Ganho de Função , Síndromes de Imunodeficiência/patologia , Inflamação/patologia , Mosaicismo , Pancitopenia/patologia , Receptor 8 Toll-Like/genética , Adolescente , Adulto , Linfócitos B/patologia , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Diferenciação Celular , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Seguimentos , Humanos , Síndromes de Imunodeficiência/etiologia , Síndromes de Imunodeficiência/metabolismo , Lactente , Inflamação/etiologia , Inflamação/metabolismo , Ativação Linfocitária , Masculino , Pancitopenia/etiologia , Pancitopenia/metabolismo , Linhagem , Prognóstico , Linfócitos T/imunologia , Adulto JovemRESUMO
BACKGROUND: One of five global deaths are attributable to sepsis. Hyperferritinemic sepsis (> 500 ng/mL) is associated with increased mortality in single-center studies. Our pediatric research network's objective was to obtain rationale for designing anti-inflammatory clinical trials targeting hyperferritinemic sepsis. METHODS: We assessed differences in 32 cytokines, immune depression (low whole blood ex vivo TNF response to endotoxin) and thrombotic microangiopathy (low ADAMTS13 activity) biomarkers, seven viral DNAemias, and macrophage activation syndrome (MAS) defined by combined hepatobiliary dysfunction and disseminated intravascular coagulation, and mortality in 117 children with hyperferritinemic sepsis (ferritin level > 500 ng/mL) compared to 280 children with sepsis without hyperferritinemia. Causal inference analysis of these 41 variables, MAS, and mortality was performed. RESULTS: Mortality was increased in children with hyperferritinemic sepsis (27/117, 23% vs 16/280, 5.7%; Odds Ratio = 4.85, 95% CI [2.55-9.60]; z = 4.728; P-value < 0.0001). Hyperferritinemic sepsis had higher C-reactive protein, sCD163, IL-22, IL-18, IL-18 binding protein, MIG/CXCL9, IL-1ß, IL-6, IL-8, IL-10, IL-17a, IFN-γ, IP10/CXCL10, MCP-1/CCL2, MIP-1α, MIP-1ß, TNF, MCP-3, IL-2RA (sCD25), IL-16, M-CSF, and SCF levels; lower ADAMTS13 activity, sFasL, whole blood ex vivo TNF response to endotoxin, and TRAIL levels; more Adenovirus, BK virus, and multiple virus DNAemias; and more MAS (P-value < 0.05). Among these variables, only MCP-1/CCL2 (the monocyte chemoattractant protein), MAS, and ferritin levels were directly causally associated with mortality. MCP-1/CCL2 and hyperferritinemia showed direct causal association with depressed ex vivo whole blood TNF response to endotoxin. MCP-1/CCL2 was a mediator of MAS. MCP-1/CCL2 and MAS were mediators of hyperferritinemia. CONCLUSIONS: These findings establish hyperferritinemic sepsis as a high-risk condition characterized by increased cytokinemia, viral DNAemia, thrombotic microangiopathy, immune depression, macrophage activation syndrome, and death. The causal analysis provides rationale for designing anti-inflammatory trials that reduce macrophage activation to improve survival and enhance infection clearance in pediatric hyperferritinemic sepsis.
Assuntos
Hiperferritinemia , Síndrome de Ativação Macrofágica , Sepse , Humanos , Criança , Síndrome de Ativação Macrofágica/complicações , Sepse/complicações , Citocinas , FerritinasRESUMO
OBJECTIVES: Drug reaction with eosinophilia and systemic symptoms (DRESS) is a severe, delayed hypersensitivity reaction (DHR). We observed DRESS to inhibitors of interleukin 1 (IL-1) or IL-6 in a small group of patients with Still's disease with atypical lung disease. We sought to characterise features of patients with Still's disease with DRESS compared with drug-tolerant Still's controls. We analysed human leucocyte antigen (HLA) alleles for association to inhibitor-related DHR, including in a small Kawasaki disease (KD) cohort. METHODS: In a case/control study, we collected a multicentre series of patients with Still's disease with features of inhibitor-related DRESS (n=66) and drug-tolerant Still's controls (n=65). We retrospectively analysed clinical data from all Still's subjects and typed 94/131 for HLA. European Still's-DRESS cases were ancestry matched to International Childhood Arthritis Genetics Consortium paediatric Still's cases (n=550) and compared for HLA allele frequencies. HLA association also was analysed using Still's-DRESS cases (n=64) compared with drug-tolerant Still's controls (n=30). KD subjects (n=19) were similarly studied. RESULTS: Still's-DRESS features included eosinophilia (89%), AST-ALT elevation (75%) and non-evanescent rash (95%; 88% involving face). Macrophage activation syndrome during treatment was frequent in Still's-DRESS (64%) versus drug-tolerant Still's (3%; p=1.2×10-14). We found striking enrichment for HLA-DRB1*15 haplotypes in Still's-DRESS cases versus INCHARGE Still's controls (p=7.5×10-13) and versus self-identified, ancestry-matched Still's controls (p=6.3×10-10). In the KD cohort, DRB1*15:01 was present only in those with suspected anakinra reactions. CONCLUSIONS: DRESS-type reactions occur among patients treated with IL-1/IL-6 inhibitors and strongly associate with common HLA-DRB1*15 haplotypes. Consideration of preprescription HLA typing and vigilance for serious reactions to these drugs are warranted.
Assuntos
Antirreumáticos/efeitos adversos , Cadeias HLA-DRB1/genética , Hipersensibilidade Tardia/genética , Doença de Still de Início Tardio/tratamento farmacológico , Doença de Still de Início Tardio/genética , Adulto , Alelos , Estudos de Casos e Controles , Síndrome de Hipersensibilidade a Medicamentos/genética , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Tolerância a Medicamentos/genética , Feminino , Cadeias HLA-DRB1/imunologia , Haplótipos , Humanos , Hipersensibilidade Tardia/imunologia , Interleucina-1/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Masculino , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/genética , Estudos Retrospectivos , Doença de Still de Início Tardio/imunologiaRESUMO
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome describing patients with severe systemic hyperinflammation. Characteristic features include unremitting fever, cytopenias, hepatosplenomegaly, and elevation of typical HLH biomarkers. Patients can develop hepatitis, coagulopathy, liver failure, central nervous system involvement, multiorgan failure, and other manifestations. The syndrome has a high mortality rate. More and more, it is recognized that while HLH can be appropriately used as a broad summary diagnosis, many pediatric patients actually suffer from an expanding spectrum of genetic diseases that can be complicated by the syndrome of HLH. Classic genetic diseases in which HLH is a typical and common manifestation include pathogenic changes in familial HLH genes (PRF1, UNC13D, STXBP2, and STX11), several granule/pigment abnormality genes (RAB27A, LYST, and AP3B1), X-linked lymphoproliferative disease genes (SH2D1A and XIAP), and others such as NLRC4, CDC42, and the Epstein-Barr virus susceptibility diseases. There are many other genetic diseases in which HLH is an infrequent complication of the disorder as opposed to a prominent manifestation of the disease caused directly by the genetic defect, including other primary immune deficiencies and inborn errors of metabolism. HLH can also occur in patients with underlying rheumatologic or autoinflammatory disorders and is usually designated macrophage activation syndrome in those settings. Additionally, HLH can develop in patients during infections or malignancies without a known (or as-yet-identified) genetic predisposition. This article will attempt to summarize current concepts in the pediatric HLH field as well as offer a practical diagnostic and treatment overview.
Assuntos
Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/terapia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ligação ao Cálcio/genética , Criança , Gerenciamento Clínico , Infecções por Vírus Epstein-Barr/complicações , Proteína 7 com Repetições F-Box-WD/genética , Predisposição Genética para Doença , Variação Genética , Humanos , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/fisiopatologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genéticaRESUMO
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes typically associated with underlying hematologic and rheumatic diseases, respectively. Familial HLH is associated with genetic cytotoxic impairment and thereby to excessive antigen presentation. Extreme elevation of serum interleukin-18 (IL-18) has been observed specifically in patients with MAS, making it a promising therapeutic target, but how IL-18 promotes hyperinflammation remains unknown. In an adjuvant-induced MAS model, excess IL-18 promoted immunopathology, whereas perforin deficiency had no effect. To determine the effects of excess IL-18 on virus-induced immunopathology, we infected Il18-transgenic (Il18tg) mice with lymphocytic choriomeningitis virus (LCMV; strain Armstrong). LCMV infection is self-limited in wild-type mice, but Prf1-/- mice develop prolonged viremia and fatal HLH. LCMV-infected Il18-transgenic (Il18tg) mice developed cachexia and hyperinflammation comparable to Prf1-/- mice, albeit with minimal mortality. Like Prf1-/- mice, immunopathology was largely rescued by CD8 depletion or interferon-γ (IFNg) blockade. Unlike Prf1-/- mice, they showed normal target cell killing and normal clearance of viral RNA and antigens. Rather than impairing cytotoxicity, excess IL-18 acted on T lymphocytes to amplify their inflammatory responses. Surprisingly, combined perforin deficiency and transgenic IL-18 production caused spontaneous hyperinflammation specifically characterized by CD8 T-cell expansion and improved by IFNg blockade. Even Il18tg;Prf1-haplosufficient mice demonstrated hyperinflammatory features. Thus, excess IL-18 promotes hyperinflammation via an autoinflammatory mechanism distinct from, and synergistic with, cytotoxic impairment. These data establish IL-18 as a potent, independent, and modifiable driver of life-threatening innate and adaptive hyperinflammation and support the rationale for an IL-18-driven subclass of hyperinflammation.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Interleucina-18/metabolismo , Coriomeningite Linfocítica/complicações , Vírus da Coriomeningite Linfocítica/patogenicidade , Perforina/fisiologia , Animais , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-18/genética , Ativação Linfocitária , Coriomeningite Linfocítica/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos TransgênicosRESUMO
BACKGROUND: Thrombotic microangiopathy-induced thrombocytopenia-associated multiple organ failure and hyperinflammatory macrophage activation syndrome are important causes of late pediatric sepsis mortality that are often missed or have delayed diagnosis. The National Institutes of General Medical Science sepsis research working group recommendations call for application of new research approaches in extant clinical data sets to improve efficiency of early trials of new sepsis therapies. Our objective is to apply machine learning approaches to derive computable 24-h sepsis phenotypes to facilitate personalized enrollment in early anti-inflammatory trials targeting these conditions. METHODS: We applied consensus, k-means clustering analysis to our extant PHENOtyping sepsis-induced Multiple organ failure Study (PHENOMS) dataset of 404 children. 24-hour computable phenotypes are derived using 25 available bedside variables including C-reactive protein and ferritin. RESULTS: Four computable phenotypes (PedSep-A, B, C, and D) are derived. Compared to all other phenotypes, PedSep-A patients (n = 135; 2% mortality) were younger and previously healthy, with the lowest C-reactive protein and ferritin levels, the highest lymphocyte and platelet counts, highest heart rate, and lowest creatinine (p < 0.05); PedSep-B patients (n = 102; 12% mortality) were most likely to be intubated and had the lowest Glasgow Coma Scale Score (p < 0.05); PedSep-C patients (n = 110; mortality 10%) had the highest temperature and Glasgow Coma Scale Score, least pulmonary failure, and lowest lymphocyte counts (p < 0.05); and PedSep-D patients (n = 56, 34% mortality) had the highest creatinine and number of organ failures, including renal, hepatic, and hematologic organ failure, with the lowest platelet counts (p < 0.05). PedSep-D had the highest likelihood of developing thrombocytopenia-associated multiple organ failure (Adj OR 47.51 95% CI [18.83-136.83], p < 0.0001) and macrophage activation syndrome (Adj OR 38.63 95% CI [13.26-137.75], p < 0.0001). CONCLUSIONS: Four computable phenotypes are derived, with PedSep-D being optimal for enrollment in early personalized anti-inflammatory trials targeting thrombocytopenia-associated multiple organ failure and macrophage activation syndrome in pediatric sepsis. A computer tool for identification of individual patient membership ( www.pedsepsis.pitt.edu ) is provided. Reproducibility will be assessed at completion of two ongoing pediatric sepsis studies.
Assuntos
Síndrome de Ativação Macrofágica , Sepse , Trombocitopenia , Anti-Inflamatórios , Proteína C-Reativa , Criança , Ensaios Clínicos como Assunto , Creatinina , Ferritinas , Humanos , Aprendizado de Máquina , Síndrome de Ativação Macrofágica/complicações , Insuficiência de Múltiplos Órgãos/etiologia , Escores de Disfunção Orgânica , Fenótipo , Reprodutibilidade dos TestesRESUMO
OBJECTIVES: Interest in using bedside C-reactive protein (CRP) and ferritin levels to identify patients with hyperinflammatory sepsis who might benefit from anti-inflammatory therapies has piqued with the COVID-19 pandemic experience. Our first objective was to identify patterns in CRP and ferritin trajectory among critically ill pediatric sepsis patients. We then examined the association between these different groups of patients in their inflammatory cytokine responses, systemic inflammation, and mortality risks. DATA SOURCES: A prospective, observational cohort study. STUDY SELECTION: Children with sepsis and organ failure in nine pediatric intensive care units in the United States. DATA EXTRACTION: Two hundred and fifty-five children were enrolled. Five distinct clinical multi-trajectory groups were identified. Plasma CRP (mg/dL), ferritin (ng/mL), and 31 cytokine levels were measured at two timepoints during sepsis (median Day 2 and Day 5). Group-based multi-trajectory models (GBMTM) identified groups of children with distinct patterns of CRP and ferritin. DATA SYNTHESIS: Group 1 had normal CRP and ferritin levels ( n = 8; 0% mortality); Group 2 had high CRP levels that became normal, with normal ferritin levels throughout ( n = 80; 5% mortality); Group 3 had high ferritin levels alone ( n = 16; 6% mortality); Group 4 had very high CRP levels, and high ferritin levels ( n = 121; 11% mortality); and Group 5 had very high CRP and very high ferritin levels ( n = 30; 40% mortality). Cytokine responses differed across the five groups, with ferritin levels correlated with macrophage inflammatory protein 1α levels and CRP levels reflective of many cytokines. CONCLUSIONS: Bedside CRP and ferritin levels can be used together to distinguish groups of children with sepsis who have different systemic inflammation cytokine responses and mortality risks. These data suggest future potential value in personalized clinical trials with specific targets for anti-inflammatory therapies.
Assuntos
COVID-19 , Sepse , Criança , Humanos , Proteína C-Reativa/metabolismo , Estudos Prospectivos , Pandemias , Biomarcadores , Ferritinas , Inflamação , Citocinas/metabolismoRESUMO
ABSTRACT: A 15-month-old full-term boy of African descent with an asymptomatic sickle cell trait presented with episodes of transient erythematous subcutaneous nodules involving the entire body except the face, since 2 weeks of age. The skin lesions evolved to areas of lipoatrophy and hyperpigmentation. An initial skin biopsy, studied at a different department at 2 months, was initially misinterpreted as subcutaneous fat necrosis of the newborn, despite the lack of the typical radiated crystals and needle-shaped clefts characterizing that entity. At 4 months of age, he developed systemic inflammatory manifestations, including fever, a new rash, significant periorbital edema, and failure to thrive. An extensive workup showed leukocytosis, hypercalcemia, elevated inflammatory markers, hypertriglyceridemia, and transaminitis. A new skin biopsy of the eyelid was diagnosed as neutrophilic lobular panniculitis with necrotic adipocytes. An initial whole-exome sequencing did not identify any causative mutations, but a WES reanalysis focused on autoinflammatory disorders was requested based on additional clinicopathologic data and revealed a mosaic intronic mutation in IKBKG c. 671+3 G > C. This mutation encodes an mRNA missing exon 5 resulting in NF-kB essential modulator (NEMO) Δ-exon 5-autoinflammatory syndrome (NDAS). NEMO-NDAS is one of the systemic autoinflammatory diseases that may appear as an unexplained panniculitis in young children, who should be monitored for immunodeficiency and/or autoinflammatory diseases. The differential diagnosis of autoinflammatory disorders should be considered in such cases incorporating the use of the whole-genome/exome sequencing in the investigation. The inhibitor of kappa-B kinase regulatory subunit gamma (IKBKG) is located on chromosome Xq28 and encodes the NEMO, a critical molecule upstream of NF-kB activation.
Assuntos
Doenças Hereditárias Autoinflamatórias , Síndromes de Imunodeficiência , Paniculite , Criança , Pré-Escolar , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , Quinase I-kappa B/genética , Síndromes de Imunodeficiência/genética , Lactente , Recém-Nascido , Masculino , NF-kappa B , Paniculite/genética , Paniculite/patologia , Pele/patologiaRESUMO
15 years ago, the fundamental biology of an inflammatory signaling complex eventually dubbed "the inflammasome" began to unravel in chronologic parallel with the discovery that many inflammatory diseases were associated with its hyperactivity. Though the genetic origins of Familial Mediterranean Fever (FMF, caused my mutations in MEFV) were discovered first, it would take nearly two decades before the mechanistic connections to a PYRIN inflammasome were made. In the interim, the intensive study of the NLRP3 inflammasome, and the diseases associated with its hyperactivation, have largely dictated the paradigm of inflammasome composition and function. Despite impressive gains, focusing on NLRP3 left gaps in our understanding of inflammasome biology. Foremost among these gaps were how inflammasomes become activated and the connections between inflammasome structure and function. Fortunately, work in another inflammasome inducer, NLRC4, grew to fill those gaps. The current understanding of the NLRC4 inflammasome is perhaps the most comprehensive illustration of the inflammasome paradigm: trigger (e.g. cytosolic flagellin), sensor (NAIP), nucleator (NLRC4), adaptor (ASC), and effector (CASP1). Detailed work has also identified observations that challenge this paradigm. Simultaneously, the features unique to each inflammasome offer a lesson in contrast, providing perspectives on inflammasome activation, regulation, and function. In this review, we endeavor to highlight recent breakthroughs related to NLRC4 inflammasome structure and activation, important in vivo work in infection and systemic inflammation, and the characterization of a spectrum of human NLRC4-associated autoinflammatory diseases.