Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Brain Behav Immun ; 118: 210-220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452987

RESUMO

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.


Assuntos
Substância Cinzenta , Heroína , Humanos , Ratos , Animais , Heroína/efeitos adversos , Microglia , Estudos Longitudinais , Encéfalo , Imageamento por Ressonância Magnética
2.
Addict Biol ; 28(7): e13288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37369125

RESUMO

Preclinical and clinical work suggests that mifepristone may be a viable treatment for alcohol use disorder (AUD). This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD (N = 32). We assessed safety, alcohol craving and consumption, after 1-week mifepristone 600 mg/day administration, in a human laboratory study comprised of a single oral yohimbine administration (32.4 mg), a cue-reactivity procedure and alcohol self-administration. Safety was monitored by adverse events and hemodynamic parameters, alcohol craving by alcohol craving questionnaire and cue-induced saliva output. During the alcohol self-administration, we assessed alcohol pharmacokinetics, subjective effects and consumption. Outcomes were assessed using Generalized Estimating Equations and mediation analysis. Mild-moderate adverse events were reported in both conditions. There was no statistically significant difference between mifepristone and placebo in alcohol pharmacokinetics and subjective effects. Furthermore, blood pressure increased only in the placebo condition after the stress-induced laboratory procedures. Mifepristone, compared to placebo, significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a developed preclinical procedure to a human laboratory study, confirming the safety of mifepristone in people with AUD and providing evidence to its role in reducing alcohol craving under stress procedures. The lack of effects on alcohol drinking may be related to the selection of non-treatment seekers and suggests future treatment-oriented trials should investigate mifepristone in people with AUD.


Assuntos
Alcoolismo , Fissura , Humanos , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Hidrocortisona/farmacologia , Alcoolismo/tratamento farmacológico , Consumo de Bebidas Alcoólicas , Etanol/farmacologia , Método Duplo-Cego
3.
Alcohol Alcohol ; 56(2): 240-249, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33401299

RESUMO

BACKGROUND AND AIMS: Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. METHODS: The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. RESULTS: Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. CONCLUSIONS: Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Andrographis/química , Diterpenos/farmacologia , PPAR gama/agonistas , Extratos Vegetais/farmacologia , Anilidas/metabolismo , Animais , Diterpenos/isolamento & purificação , Etanol/metabolismo , Masculino , Extratos Vegetais/isolamento & purificação , Ratos , Autoadministração
4.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920737

RESUMO

Alcoholism is a chronically relapsing disorder characterized by high alcohol intake and a negative emotional state during abstinence, which contributes to excessive drinking and susceptibility to relapse. Stress, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and alterations in glucocorticoid receptor (GR) function have been linked to transition from recreational consumption to alcohol use disorder (AUD). Here, we investigated the effect of pharmacological antagonisms of GR on alcohol self-administration (SA) using male and female Wistar and Marchigian Sardinian alcohol-preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and highly sensitive to stress. Animals were trained to self-administer 10% (v/v) alcohol. Once a stable alcohol SA baseline was reached, we tested the effect of the GR antagonists mifepristone (0.0, 10, 30 and 60 mg/kg; i.p.) and CORT113176 (0.0, 10, 30 and 60 mg/kg) on alcohol SA. To evaluate whether the effects of the two compounds were specific for alcohol, the two drugs were tested on a similar saccharin SA regimen. Finally, basal blood corticosterone (CORT) levels before and after alcohol SA were determined. Systemic injection with mifepristone dose-dependently reduced alcohol SA in male and female Wistars but not in msPs. Administration of CORT113176 decreased alcohol SA in male and female Wistars as well as in female msPs but not in male msP rats. At the highest dose, mifepristone also reduced saccharin SA in male Wistars and female msPs, suggesting the occurrence of some nonspecific effects at 60 mg/kg of the drug. Similarly, the highest dose of CORT113176 (60 mg/kg) decreased saccharin intake in male Wistars. Analysis of CORT levels revealed that females of both rat lines had higher blood levels of CORT compared to males. Alcohol consumption reduced CORT in females but not in males. Overall, these findings indicate that selective blockade of GR selectively reduces alcohol SA, and genetically selected msP rats are less sensitive to this pharmacological manipulation compared to heterogeneous Wistars. Moreover, results suggest sex differences in response to GR antagonism and the ability of alcohol to regulate GR transmission.


Assuntos
Alcoolismo/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Receptores de Glucocorticoides/antagonistas & inibidores , Alcoolismo/genética , Animais , Feminino , Antagonistas de Hormônios/farmacologia , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Masculino , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Ratos Wistar
5.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803557

RESUMO

Marchigian Sardinian alcohol-preferring (msP) rats serve as a unique model of heightened alcohol preference and anxiety disorders. Their innate enhanced stress and poor stress-coping strategies are driven by a genetic polymorphism of the corticotropin-releasing factor receptor 1 (CRF1) in brain areas involved in glucocorticoid signaling. The activation of glucocorticoid receptors (GRs) regulates the stress response, making GRs a candidate target to treat stress and anxiety. Here, we examined whether mifepristone, a GR antagonist known to reduce alcohol drinking in dependent rats, decreases innate symptoms of anxiety in msPs. Male and female msPs were compared to non-selected Wistar counterparts across three separate behavioral tests. We assessed anxiety-like behavior via the novelty-induced hypophagia (NIH) assay. Since sleep disturbances and hyperarousal are common features of stress-related disorders, we measured sleeping patterns using the comprehensive lab monitoring system (CLAMS) and stress sensitivity using acoustic startle measures. Rats received an acute administration of vehicle or mifepristone (60 mg/kg) 90 min prior to testing on NIH, acoustic startle response, and CLAMS. Our results revealed that both male and female msPs display greater anxiety-like behaviors as well as enhanced acoustic startle responses compared to Wistar counterparts. Male msPs also displayed reduced sleeping bout duration versus Wistars, and female msPs displayed greater acoustic startle responses versus male msPs. Importantly, the enhanced anxiety-like behavior and startle responses were not reduced by mifepristone. Together, these findings suggest that increased expression of stress-related behaviors in msPs are not solely mediated by acute activation of GRs.


Assuntos
Ansiedade/patologia , Comportamento Animal , Mifepristona/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Nível de Alerta/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/fisiopatologia
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884757

RESUMO

Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.


Assuntos
Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Estresse Fisiológico/fisiologia , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/tratamento farmacológico , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Humanos , Modelos Neurológicos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/fisiopatologia , Peptídeos Opioides/agonistas , Peptídeos Opioides/antagonistas & inibidores , Recompensa , Estresse Fisiológico/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Receptor de Nociceptina , Nociceptina
7.
J Neurosci ; 38(34): 7516-7528, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30030395

RESUMO

Epigenetic mechanisms have gained increasing attention as regulators of synaptic plasticity and responsiveness to drugs of abuse. In particular, it has been shown that the activity of the DNA methyltransferase 3a (Dnmt3a) mediates certain long-lasting effects of cocaine. Here we examined the role of the Dnmt isoforms, Dnmt3a1 and Dnmt3a2, within the nucleus accumbens (NAc) on transcriptional activity of immediate early genes (IEGs) and acute and long-lasting responsiveness to cocaine and cocaine conditioned cues. Using primary striatal cultures, we show that transcription of Dnmt3a2, but not that of Dnmt3a1, is activated by dopamine D1 receptor signaling and that knockdown of Dnmt3a2 using viral vector-mediated expression of Dnmt3a2-specific shRNAs impairs induction of the IEGs, Arc, FosB, and Egr2 Acute cocaine administration increases expression of Dnmt3a2 but not that of Dnmt3a1 in the NAc shell. In contrast, in the NAc core, expression of Dnmt3a1 and Dnmt3a2 was unaffected by cocaine administration. shRNA-mediated knockdown of Dnmt3a2 in vivo impairs the induction of IEGs, including Egr2 and FosB indicating that Dnmt3a2 regulates cocaine-dependent expression of plasticity genes in the rat NAc shell. Cocaine self-administration experiments in rats revealed that Dnmt3a2 regulates drug cue memories that drive reinstatement of cocaine seeking as well as incubation of this phenomenon within the NAc shell. Dnmt3a2 does not influence the primary reinforcing effects of cocaine. Thus, Dnmt3a2 mediates long-lasting cocaine cue memories within the NAc shell. Targeting Dnmt3a2 expression or function may interfere with cocaine craving and relapse.SIGNIFICANCE STATEMENT In humans, drug craving can occur in response to conditioned cues, even after extended periods of abstinence. In rats, cue-induced cocaine seeking has been shown to increase progressively during the first 2 months of abstinence from drug self-administration. This phenomenon, referred to as incubation of cocaine seeking, is consistent with the hypothesis that in humans craving increases over time and remains high following prolonged abstinence. Those long-lasting behavioral changes are likely to be mediated by epigenetic effects and neuroplastic changes within the mesolimbic brain reward system. Here we show that a specific isoform of DNA-methyltransferases in the NAc shell regulates drug cue memories that drive reinstatement of cocaine seeking after both early abstinence and incubation of cocaine craving.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/enzimologia , Fissura/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Núcleo Accumbens/enzimologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , DNA (Citosina-5-)-Metiltransferases/biossíntese , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Indução Enzimática/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Núcleo Accumbens/efeitos dos fármacos , Isoformas de Proteínas/fisiologia , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/fisiologia , Autoadministração , Síndrome de Abstinência a Substâncias/fisiopatologia
8.
Handb Exp Pharmacol ; 254: 187-212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30968214

RESUMO

Nociceptin/orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995 and has been widely studied since. The role of the N/OFQ system in drug abuse has attracted researchers' attention since its initial discovery. The first two scientific papers describing the effect of intracranial injection of N/OFQ appeared 20 years ago and reported efficacy of the peptide in attenuating alcohol intake, whereas heroin self-administration was insensitive. Since then more than 100 scientific articles investigating the role of the N/OFQ and N/OFQ receptor (NOP) system in drug abuse have been published. The present article provides an historical overview of the advances in the field with focus on three major elements. First, the most robust data supportive of the efficacy of NOP agonists in treating drug abuse come from studies in the field of alcohol research, followed by psychostimulant and opioid research. In contrast, activation of NOP appears to facilitate nicotine consumption. Second, emerging data challenge the assumption that activation of NOP is the most appropriate strategy to attenuate consumption of substances of abuse. This assumption is based first on the observation that animals carrying an overexpression of NOP system components are more prone to consume substances of abuse, whereas NOP knockout rats are less motivated to self-administer heroin, alcohol, and cocaine. Third, administration of NOP antagonists also reduces alcohol consumption. In addition, NOP blockade reduces nicotine self-administration. Hypothetical mechanisms explaining this apparent paradox are discussed. Finally, we focus on the possibility that co-activation of NOP and mu opioid (MOP) receptors is an alternative strategy, readily testable in the clinic, to reduce the consumption of psychostimulants, opiates, and, possibly, alcohol.


Assuntos
Analgésicos Opioides/farmacologia , Peptídeos Opioides/metabolismo , Receptores Opioides , Transtornos Relacionados ao Uso de Substâncias , Analgésicos Opioides/química , Animais , Etanol/química , Peptídeos Opioides/química , Ratos , Receptores Opioides/química , Autoadministração , Nociceptina
9.
Addict Biol ; 23(6): 1223-1232, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29071769

RESUMO

Fatty acid amide hydrolase (FAAH) is an enzyme that prominently degrades the major endocannabinoid N-arachidonoylethanolamine (anandamide). Inhibition of this enzyme leads to increased anandamide levels in brain regions that modulate stress and anxiety. Recently, we found that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats display hyperactive FAAH in amygdalar regions that was associated with increased stress sensitivity and a hyper-anxious phenotype. Our previous work has also demonstrated that msPs display an innate preference for and excessive consumption of alcohol, potentially reflecting a form of self-medication to gain relief from hyper-anxious states. Here, we expand on our previous work by microinjecting the selective FAAH inhibitor URB597 (vehicle, 0.03, 0.1 and 1.0 µg per rat) into the central amygdala (CeA) and basolateral amygdala in msP versus non-selected Wistar rats to evaluate the effects of localized FAAH inhibition on operant alcohol self-administration and restraint-induced anxiety using the elevated plus maze. Intra-CeA URB597 significantly reduced alcohol self-administration in msP but not in Wistar rats. Intra-basolateral amygdala URB597 also attenuated alcohol drinking in msPs, although the effect was less pronounced relative to CeA treatment. In contrast, control experiments administering URB597 into the ventral tegmental area produced no genotypic differences in drinking. We also found that URB597 treatment in the CeA significantly reduced the anxiogenic effects of restraint stress in msPs, although no effects were detected in Wistars. Dysregulation of FAAH regulated systems in the major output region of the amygdala may drive the propensity for co-morbid expression of anxiety and excessive alcohol use.


Assuntos
Alcoolismo/enzimologia , Amidoidrolases/antagonistas & inibidores , Transtornos de Ansiedade/enzimologia , Núcleo Central da Amígdala/enzimologia , Análise de Variância , Animais , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Carbamatos/administração & dosagem , Carbamatos/farmacologia , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Etanol/administração & dosagem , Masculino , Aprendizagem em Labirinto , Microinjeções , Ratos Endogâmicos , Ratos Wistar , Restrição Física , Autoadministração , Estresse Psicológico/etiologia
10.
Addict Biol ; 23(1): 182-195, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28231635

RESUMO

Cocaine addiction is a multi-dimensional behavioral disorder characterized by a loss of control over cocaine taking despite of detrimental consequences. Structural MRI studies have revealed association between cocaine consumption and gray matter volume (GMV) in cocaine-addicted patients. However, the behavioral correlates of GMV in cocaine addiction are poorly understood. Here, we used a DSM-IV-based rat model of cocaine addiction with high face validity for structural imaging. According to three behavioral sub-dimensions of addiction, rats were separated into two groups showing either addict-like or non-addict-like behavior. These behavioral sub-dimensions were (1) the inability to refrain from drug-seeking and taking, (2) high motivation for the drug, and (3) maintained drug use despite negative consequences. In these rats, we performed structural MRI with voxel-based morphometry and analyzed the interaction of GMV with behavioral sub-dimensions in cocaine-addicted rats. Our major findings are that GMV differentially correlate with the inability to refrain from drug-seeking and taking in addict-like and non-addict-like rats within the somatosensory cortices and the amygdala. High motivation for the drug differentially correlates with GMV in addict-like and non-addict-like rats within the medial prefrontal cortex, and maintained drug use despite negative consequences differentially correlates with GMV in these two groups of rats within the periaqueductal gray. Our results demonstrate that the behavioral differences characterizing addict-like and non-addict-like rats in each behavioral sub-dimension of addiction are reflected by divergent covariance with GMV. We conclude that structural imaging provides specific neuroanatomical correlates of behavioral sub-dimensions of addiction.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Animais , Comportamento Animal , Encéfalo/patologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Comportamento de Procura de Droga , Substância Cinzenta/patologia , Motivação , Tamanho do Órgão , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Substância Cinzenta Periaquedutal/patologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Ratos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/patologia
11.
Neurobiol Learn Mem ; 138: 281-290, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27720809

RESUMO

High rates of relapse after prolonged abstinence are often triggered by exposure to drug-associated cues that induce drug craving. Incubation of drug craving is a phenomenon that consists of time-dependent increases in cue-induced drug craving during withdrawal. Plasticity mechanisms in the nucleus accumbens (NAc) underlie drug-seeking responses and involve changes in excitatory synaptic transmission's efficacy. In particular, the prefrontal cortex (PFC) glutamatergic input to the NAc core has been well characterized regarding cocaine-evoked plasticity following non-contingent versus contingent exposure to cocaine or alternatively after protracted abstinence. Still, the synaptic strength during the course of withdrawal compared to drug-naïve condition is unknown, since electrophysiological characterizations are mainly performed in brain slices or focus on distinct time points during cocaine-evoked plasticity in vivo. Here we used an incubation paradigm, in which rats had extended accessed to cocaine self-administration, and underwent cue-induced reinstatement at withdrawal day 1 and 30. Longitudinal in vivo field potential recordings in awake rats showed that chronic contingent exposure to cocaine strengthened the prelimbic PFC to NAc core pathway when compared to pre-cocaine condition. This strengthening was associated with decreased paired-pulse ratios (PPR), indicative of presynaptic enhancement of glutamate release, which persisted throughout withdrawal. Moreover, both field potential increase and PPR reduction after chronic cocaine exposure correlated with the number of cocaine infusions received during training. The present results together with previous findings of withdrawal-dependent postsynaptic enhancement of the PFC-NAc core pathway, suggest an additional presynaptic strengthening that is initiated during self-administration and maintained throughout abstinence in drug-seeking rats. These cocaine-driven neuroadaptations may provide a neural substrate for maladaptive processing of cues that can ultimately trigger craving and relapse.


Assuntos
Cocaína/administração & dosagem , Fissura/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Fissura/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração
12.
Neuropharmacology ; 257: 110048, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901642

RESUMO

Maintenance therapy with buprenorphine and methadone is the gold standard pharmacological treatment for opioid use disorder (OUD). Despite these compounds demonstrating substantial efficacy, a significant number of patients do not show optimal therapeutic responses. The abuse liability of these medications is also a concern. Here we used rats to explore the therapeutic potential of the new long-acting pan-opioid agonist Cebranopadol in OUD. We tested the effect of cebranopadol on heroin self-administration and yohimbine-induced reinstatement of heroin seeking. In addition, we evaluated the abuse liability potential of cebranopadol in comparison to that of heroin under fixed ratio 1 (FR1) and progressive ratio (PR) operant self-administration contingencies. Oral administration of cebranopadol (0, 25, 50 µg/kg) significantly attenuated drug self-administration independent of heroin dose (1, 7, 20, 60µg/inf). Cebranopadol also reduced the break point for heroin (20 µg/inf). Finally, pretreatment with cebranopadol significantly attenuated yohimbine-induced reinstatement of drug seeking. In abuse liability experiments under FR1 contingency, rats maintained responding for heroin (1, 7, 20, 60µg/inf) to a larger extent than cebranopadol (0.03, 0.1, 0.3, 1.0, 6.0µg/inf). Under PR contingency, heroin maintained responding at high levels at all except the lowest dose, while the break point (BP) for cebranopadol did not differ from that of saline. Together, these data indicate that cebranopadol is highly efficacious in attenuating opioid self-administration and stress-induced reinstatement, while having limited abuse liability properties. Overall, the data suggest clinical potential of this compound for OUD treatment.


Assuntos
Heroína , Transtornos Relacionados ao Uso de Opioides , Autoadministração , Ioimbina , Animais , Masculino , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Ratos , Heroína/administração & dosagem , Ioimbina/farmacologia , Ratos Sprague-Dawley , Compostos de Espiro/farmacologia , Compostos de Espiro/administração & dosagem , Compostos de Espiro/uso terapêutico , Comportamento de Procura de Droga/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/administração & dosagem
13.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463974

RESUMO

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI 1 ) and after (MRI 2 ) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI 1 and MRI 2 . Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.

14.
Front Psychiatry ; 15: 1369783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476614

RESUMO

Introduction: It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods: We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and ß-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results: Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of ß-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion: These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.

15.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712202

RESUMO

The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.

16.
Alcohol Clin Exp Res ; 37(8): 1351-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23550625

RESUMO

BACKGROUND: Pioglitazone is a selective peroxisome proliferator-activated receptor γ (PPARγ) agonist used for the treatment of insulin resistance and type 2 diabetes. Previous studies conducted in our laboratory showed that activation of PPARγ by pioglitazone reduces alcohol drinking, stress-induced relapse, and alcohol withdrawal syndrome in rats. Pioglitazone was not able to prevent relapse elicited by alcohol cues. Conversely, the nonselective opioid antagonist naltrexone has been shown to reduce alcohol drinking and cue- but not stress-induced relapse in rodents. METHODS: Based on these findings, this study was sought to determine the efficacy of pioglitazone and naltrexone combination on alcohol intake and relapse behavior. Genetically selected alcohol-preferring Marchigian Sardinian (msP) rats were used for the study. RESULTS: Pioglitazone (10 and 30 mg/kg) and naltrexone (0.25 and 1.0 mg/kg) each individually reduced alcohol drinking in msP rats. The combination of the 2 drugs resulted in a more potent alcohol drinking reduction than single agents. Confirming previous studies, pioglitazone (10 and 30 mg/kg) significantly reduced relapse induced by the pharmacological stressor yohimbine (1.25 mg/kg) but not by cues predictive of alcohol availability. Conversely, naltrexone reduced reinstatement of drug seeking elicited by alcohol cues but not by yohimbine. CONCLUSIONS: The drug combination was effective in reducing both relapse behaviors. These findings open new vistas in the use pioglitazone in combination with naltrexone for the treatment of alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Naltrexona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , PPAR gama/metabolismo , Tiazolidinedionas/uso terapêutico , Animais , Sinais (Psicologia) , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Hipoglicemiantes/farmacologia , Masculino , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Pioglitazona , Ratos , Tiazolidinedionas/farmacologia , Ioimbina
17.
Proc Natl Acad Sci U S A ; 107(45): 19567-72, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974945

RESUMO

Drug addiction is a chronic relapsing disorder characterized by compulsive drug seeking and use. Environmental conditioning factors are among the major determinants of relapse in abstinent cocaine users. Here we describe a role of the neuropeptide S (NPS) system in regulating relapse. In rats with a history of cocaine self-administration, presentation of stimuli predictive of drug availability reinstates drug seeking, triggering relapse. Intracerebroventricular (ICV) injection of NPS increased conditioned reinstatement of cocaine seeking, whereas peripheral administration of the NPS receptor antagonist SHA 68 reduced it. Manipulation of the NPS receptor system did not modify cocaine self-administration. We also found that ICV NPS administration activates c-Fos expression in hypocretin-1/orexin-A (Hcrt-1/Ox-A) immunoreactive neurons in the lateral hypothalamus (LH) and in the perifornical area (PeF). Of note, intra-LH and intra-PeF administration of NPS increased conditioned reinstatement of cocaine responding, an effect that was selectively blocked with the Hcrt-1/Ox-A receptor selective antagonist SB334867. Finally, results showed that intra-LH injection of the NPS antagonist [D-Cys(tBu) (5)]NPS blocked cue-induced cocaine seeking, indicating a role for this system in the pathophysiology of drug relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/etiologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Animais , Cocaína/administração & dosagem , Sinais (Psicologia) , Vias de Administração de Medicamentos , Hipotálamo/citologia , Neurônios , Neuropeptídeos/administração & dosagem , Neuropeptídeos/antagonistas & inibidores , Neurotransmissores , Orexinas , Ratos , Ratos Long-Evans , Recidiva
18.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546836

RESUMO

The gold standard pharmacological treatment for opioid use disorder (OUD) consists of maintenance therapy with long-acting opioid agonists such as buprenorphine and methadone. Despite these compounds having demonstrated substantial efficacy, a significant number of patients do not show optimal therapeutic responses. Moreover, the abuse liability of these medications remains a major concern. Cebranopadol, is a new, long-acting pan-opioid agonist that also activates the nociception/orphanin FQ NOP receptor. Here we used rats to explore the therapeutic potential of this agent in OUD. First, in operant intravenous self-administration experiments we compared the potential abuse liability of cebranopadol with the prototypical opioid heroin. Under a fixed ratio 1 (FR1) contingency, rats maintained responding for heroin (1, 7, 20, 60 µg/inf) to a larger extent than cebranopadol (0.03, 0.1, 0.3, 1.0, 6.0 µg/inf). When the contingency was switched to a progressive ratio (PR) reinforcement schedule, heroin maintained responding at high levels at all except the lowest dose. Conversely, in the cebranopadol groups responding decreased drastically and the break point (BP) did not differ from saline controls. Next, we demonstrated that oral administration of cebranopadol (0, 25, 50 µg/kg) significantly attenuated drug self-administration independent of heroin dose (1, 7, 20, 60 µg/inf). Cebranopadol also reduced the break point for heroin (20 µg/inf). Furthermore, in a heroin self-administration training extinction/reinstatement paradigm, pretreatment with cebranopadol significantly attenuated yohimbine stress-induced reinstatement of drug seeking. Together, these data indicate that cebranopadol has limited abuse liability compared to heroin and is highly efficacious in attenuating opioid self-administration and stress-induced reinstatement, suggesting clinical potential of this compound for OUD treatment.

19.
medRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711869

RESUMO

Preclinical and clinical work suggests that mifepristone (glucocorticoid receptor antagonist), may be a viable treatment for alcohol use disorder (AUD). The aim of this work was to translate our preclinical mifepristone study using yohimbine (α2 receptor antagonist) stress-induced reinstatement of alcohol-seeking to a clinical setting. This was a Phase 1/2, outpatient, cross-over, randomized, double-blind, placebo-controlled trial with non-treatment-seeking individuals with AUD ( N =32). We investigated the safety, alcohol craving and consumption after oral administration of mifepristone (600mg daily for a week) in a human laboratory study comprised of administration of yohimbine in a cue-reactivity procedure and alcohol self-administration. Outcomes were assessed using Generalized Estimating Equations and mediation and moderation analyses assessed mechanisms of action and precision medicine targets. We did not observe serious adverse events related to the study drugs or study procedure and mild to moderate non-serious adverse events were reported by both study conditions. Also, there was no statistically-significant difference between the mifepristone and placebo in the hemodynamic response, alcohol subjective effects and pharmacokinetics parameters. Mifepristone significantly reduced alcohol craving and increased cortisol levels. Mifepristone-induced cortisol increase was not a mediator of alcohol craving. Moderation analysis with family history density of AUD (FHDA) and mifepristone, suggested that reduced craving was present in individuals with low , but not high FHDA. Mifepristone, compared to placebo, did not reduce alcohol consumption in the laboratory or in a naturalistic setting. This study successfully translated a preclinical paradigm to a human laboratory study confirming safety, tolerability and efficacy of mifepristone in an alcohol paradigm. Mediation analysis showed that the effect of mifepristone on craving was not related to mifepristone-induced increases in cortisol and moderation of FHDA suggested the importance of evaluating AUD endophenotypes for pharmacotherapies. Clinical trial registration: Clinicaltrials.gov ; NCT02243709. IND/FDA: 121984, mifepristone and yohimbine (Holder: Haass-Koffler).

20.
Eur J Pharmacol ; 914: 174678, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34875275

RESUMO

Pain is a common symptom accompanying several clinical conditions and causes serious distress to patients. Addressing pain management is an important aspect of disease treatment, including cancer therapy. Opioid analgesics used to manage pain in human and veterinary medicine have been associated with substance dependence and other adverse effects, thereby limiting their application. Thus, the development of opioid analgesics with good safety profiles with minimal adverse effects and no addictive effects, is presently the focus of pain research. As a new potential analgesic, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028) has fewer adverse effects than other analgesics and is expected to be a safer alternative. In this review, we discuss the development of the opioid analog BU08028 and summarize its analgesic effects and biological characteristics, including efficiency, safety, and tolerance. Furthermore, we elaborate on studies showing the bifunctional effect of BU08028, which targets both mu opioid peptide and nociceptin-orphanin FQ peptide receptors, as well as the unique advantages of using BU08028 over single-target opioid agonists. Previous studies have suggested that BU08028 can not only weaken the reward and abuse effects of opioids and other drugs, but also enhance the anti-nociceptive effect of the mu opioid peptide receptors, making it a potent analgesic. Besides, we describe studies suggesting that BU08028 inhibits the effects of alcohol, making it a candidate drug for the management of alcohol addiction. Our review suggests that BU08028 is a potential novel medicine for managing pain and addiction.


Assuntos
Buprenorfina/análogos & derivados , Dor , Analgésicos/farmacologia , Buprenorfina/farmacologia , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Manejo da Dor/métodos , Manejo da Dor/tendências , Receptores Opioides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA