Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(30): e202405983, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38699982

RESUMO

On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO2. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.

2.
Chemistry ; 29(9): e202300148, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36722725

RESUMO

Invited for the cover of this issue are two collaborating groups: one at the Universidad Autónoma de Madrid and the other at the Instituto de Ciencia de Materiales de Madrid. The image depicts Cucurbit[8]uril adsorbed on a transition metal dichalcogenide surface letting the cavity open for complex formation with melatonin and allowing efficient electrochemical sensing. Read the full text of the article at 10.1002/chem.202203244.

3.
Chemistry ; 29(9): e202203244, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534440

RESUMO

Host-guest interactions are of paramount importance in supramolecular chemistry and in a wide range of applications. Particularly well known is the ability of cucurbit[n]urils (CB[n]) to selectively host small molecules. We show that the charge transfer and complexation capabilities of CB[n] are retained on the surface of 2D transition metal dichalcogenides (TMDs), allowing the development of efficient electrochemical sensing platforms. We unveil the mechanisms of host-guest recognition between the MoS2 -CB[8] hybrid interface and melatonin (MLT), an important molecular regulator of vital constants in vertebrates. We find that CB[8] on MoS2 organizes the receptor portals perpendicularly to the surface, facilitating MLT complexation. This advantageous adsorption geometry is specific to TMDs and favours MLT electro-oxidation, as opposed to other 2D platforms like graphene, where one receptor portal is closed. This study rationalises the cooperative interaction in 2D hybrid systems to improve the efficiency and selectivity of electrochemical sensing platforms.

4.
J Chem Phys ; 154(12): 124101, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810656

RESUMO

To understand the influence of interchromophoric arrangements on photo-induced processes and optical properties of aggregates, it is fundamental to assess the contribution of local excitations [charge transfer (CT) and Frenkel (FE)] to exciton states. Here, we apply a general procedure to analyze the adiabatic exciton states derived from time-dependent density functional theory calculations, in terms of diabatic states chosen to coincide with local excitations within a restricted orbital space. In parallel, motivated by the need of cost-effective approaches to afford the study of larger aggregates, we propose to build a model Hamiltonian based on calculations carried out on dimers composing the aggregate. Both approaches are applied to study excitation energy profiles and CT character modulation induced by interchromophore rearrangements in perylene bisimide aggregates up to a tetramer. The dimer-based approach closely reproduces the results of full-aggregate calculations, and an analysis in terms of symmetry-adapted diabatic states discloses the effects of CT/FE interactions on the interchange of the H-/J-character for small longitudinal shifts of the chromophores.

5.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299394

RESUMO

In this work, we investigate two recently synthesized naphthodithiophene diimide (NDTI) derivatives featuring promising n-type charge transport properties. We analyze the charge transport pathways and model charge mobility with the non-adiabatic hopping mechanism using the Marcus-Levich-Jortner rate constant formulation, highlighting the role of fluoroalkylated substitution in α (α-NDTI) and at the imide nitrogen (N-NDTI) position. In contrast with the experimental results, similar charge mobilities are computed for the two derivatives. However, while α-NDTI displays remarkably anisotropic mobilities with an almost one-dimensional directionality, N-NDTI sustains a more isotropic charge percolation pattern. We propose that the strong anisotropic charge transport character of α-NDTI is responsible for the modest measured charge mobility. In addition, when the role of thermally induced transfer integral fluctuations is investigated, the computed electron-phonon couplings for intermolecular sliding modes indicate that dynamic disorder effects are also more detrimental for the charge transport of α-NDTI than N-NDTI. The lower observed mobility of α-NDTI is therefore rationalized in terms of a prominent anisotropic character of the charge percolation pathways, with the additional contribution of dynamic disorder effects.

6.
Phys Chem Chem Phys ; 22(24): 13440-13455, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519689

RESUMO

The prototropic tautomeric equilibrium in 2-hydroxypyridine serves as a prototype model for the study of nucleobases' behaviour. The position of such an equilibrium in parent and chlorine monosubstituted 2-hydroxypyridine compounds in the gas phase was determined using synchrotron based techniques. The lactim tautomer is dominant for the 5- and 6-substituted compounds, whereas the parent, 3- and 4-substituted isomers have comparable populations for both tautomers. Information was obtained by measuring valence band and core level photoemission spectra at the chlorine L-edge and carbon, nitrogen, and oxygen K-edges. The effect of chlorine on the core ionization potentials of the atoms in the heterocycle was evaluated and reasonable agreement with a simple model was obtained. Basic considerations of resonance structures correctly predicts the tautomeric equilibrium for the 5- and 6-substituted compounds. The vibrationally resolved structure of the low energy portion of the valence band photoionization spectra is assigned based on quantum-chemical calculations of the neutral and charged species followed by simulation of the vibronic structure. It is shown that the first ionization occurs from a π orbital of similar shape for both tautomers. In addition, the highly distinctive vibronic structure observed just above the first ionization of the lactim, for three of the five species investigated, is assigned to the second ionization of the lactam.

7.
Photochem Photobiol Sci ; 18(9): 2180-2190, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30816403

RESUMO

The one-photon (1P) and two-photon (2P) absorption properties of three quadrupolar dyes, featuring thiophene as a donor and acceptors of varying strengths, are determined by a combination of experimental and computational methods employing the density functional theory (DFT). The emission shifts in different solvents are well reproduced by time-dependent DFT calculations with the linear response and state specific approaches in the framework of the polarizable continuum model. The calculations show that the energies of both 1P- and 2P-active states decrease with an increase of the strength of the acceptor. The 2P absorption cross-sections predicted by the response theory are accounted for by considering just one intermediate state (S1) in the sum-over-states formulation. For the chromophore featuring the stronger acceptor, the energetic positions of the 1P- and 2P-active states prevent the exploitation of the theoretically predicted very high 2P activity due to the competing 1P absorption into the S1 state.

8.
Phys Chem Chem Phys ; 21(4): 2057-2068, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30638227

RESUMO

The effect of donor-acceptor (D-A) moieties on magnitudes such as reorganization energies and electronic couplings in cycloparaphenylene (CPP) carbon based nanohoops (i.e. conjugated organic molecules with cyclic topology) is highlighted via model computations and analysis of the available crystalline structure of N,N-dimethylaza[8]CPP. For the sake of comparison, intra-molecular and inter-molecular charge transport parameters are concomitantly modelled for the recently determined herringbone polymorph of [6]CPP, along with [8]CPP and [12]CPP. The peculiar contribution of low frequency vibrations to intramolecular reorganization energies is also disclosed by computing the Huang-Rhys factors for the investigated [n]CPPs and the N,N-dimethylaza derivative. In contrast with most planar organic semiconductors where the layer in which molecules are herringbone arranged identifies the high-mobility plane, nanohoops disclose inter-layer electronic couplings larger than the intra-layer counterparts. Charge transfer rate constants modelled with three different approaches (Marcus, Marcus-Levich-Jortner and spectral overlap) suggest that D-A nanohoops, owing to orbital localization, may be more efficient for charge transport than [n]CPPs for suitable solid phase arrangements.

9.
Phys Chem Chem Phys ; 21(14): 7281-7287, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860226

RESUMO

Oligorylenes have been the focus of research during the journey toward intrinsically conducting polyrylene. Recently, the description of diradicaloid and tetraradicaloid properties in long oligorylene molecules has revived the old question about their electronic structures which is of current interest in the context of the properties of graphene nanoribbons. Here we show that the armchair edges of smaller oligorylenes are embedded within aromatic units and they transform into armchair cis-polyacetylenic structures for octarylene and longer. Concomitantly, the short zig-zag edges of oligorylenes stabilize diradicaloid and multiradical states. This electronic transformation is proved experimentally by Raman spectroscopy and supported by theoretical modelling.

10.
Angew Chem Int Ed Engl ; 58(41): 14467-14471, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31322792

RESUMO

A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene-based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through-bridge inter-redox site electronic couplings (VAB ) have been calculated for their respective mixed-valence radical cation and radical anion species. The unusual similitudes of the resulting VAB values for the given structures reveal the intervention of molecular shapes with balanced semi-quinoidal/semi-aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π-conjugated molecules. However, once probed herein for perylene-based systems, it can be extrapolated to other π-conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.

11.
J Comput Chem ; 39(24): 1979-1989, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315587

RESUMO

On the example of an aggregate of two perylenebisimide (PBI) molecules the character of the lowest excited electronic states in terms of charge transfer (CT) and Frenkel exciton (FE) configurations is investigated as a function of the intermolecular arrangement. A minimal model Hamiltonian based on two FE and two CT configurations at the frontier-orbitals CIS (FOCIS) level is shown to represent a simple and comprehensible approach providing insight into the physical significance of the model Hamiltonian matrix elements. The recently introduced analysis and diabatization procedure (Liu et al., J. Chem. Phys. 2015, 143, 084106 ) method is used to extract the energies of the configurations and their interactions (the model Hamiltonian parameters) also from the accurate CC2 approach. An analysis in terms of diabatic energy profiles and their interactions shows that the FOCIS parameters give a qualitatively correct description of the adiabatic excited state energy profiles. Comparison with CC2 reveals, however, the presence of avoided crossings at FOCIS level, associated with a large character change (CT/FE) of the excited states as a function of the aggregate structure, which represents the major drawback of FOCIS results. We show that proper amendment of the FOCIS-derived parameters allows to accurately represent the potential energy surfaces and crossings of the excited dimer states as a function of the aggregate structure. © 2018 Wiley Periodicals, Inc.

12.
Phys Chem Chem Phys ; 20(37): 24227-24238, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30209470

RESUMO

A peculiar characteristic of open-shell singlet diradical molecules is the presence of a double exciton state (H,H → L,L) among low lying excited states. Recent high-level quantum-chemical investigations including a static and dynamic electron correlation have demonstrated that this state can become the lowest singlet excited state, a diagnostic fingerprint of the diradical system. Here we investigate the performance of less computationally demanding TDDFT calculations by employing two approaches: the spin-flip TDDFT scheme and TD calculations based on unrestricted broken symmetry antiparallel-spin reference configuration (TDUDFT). The calculations are tested on a number of recently synthesized, large conjugated systems displaying from moderate to large diradical character and showing experimental trace of the double exciton state. We show that spin-flip (SF) TDB3LYP calculations in the collinear approximation generally underestimate the excitation energy of the double exciton state. When the molecule displays a strong diradical character, the unrestricted antiparallel-spin reference configuration of TDUDFT calculations is characterized by strongly localized frontier molecular orbitals. We show that under these conditions the double exciton state is captured by TDUB3LYP calculations since it is described by singly excited configurations and its excitation energy can be accurately predicted. Owing to the improved description of the ground state, also the excitation energy of the single exciton H → L state generally improves at the TDUB3LYP level. With regard to the double exciton state, SF TDB3LYP performs slightly better for small to medium diradical character while a large diradical character (and strong orbital localization) is a prerequisite for the success of TDUB3LYP calculations whose quality otherwise deteriorates.

13.
Phys Chem Chem Phys ; 16(39): 21550-8, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25188414

RESUMO

The anisotropy of the n-type charge transport of a fluoro-alkylated naphthalene diimide is investigated in the framework of the non-adiabatic hopping mechanism. Charge transfer rate constants are computed within the Marcus-Levich-Jortner formalism including a single effective mode treated quantum-mechanically and are injected in a kinetic Monte Carlo scheme to propagate the charge carrier in the crystal. Charge mobilities are computed at room temperature with and without the influence of an electric field and are shown to compare very well with previous measurements in single-crystal devices which offer a superior substrate for testing molecular models of charge transport. Thermally induced dynamical effects are investigated by means of an integrated computational approach including molecular dynamics simulations coupled to quantum-chemical evaluation of electronic couplings. It is shown that charge transport occurs mainly in the b,c crystallographic plane with a major component along the c axis which implies an anisotropy factor in very good agreement with the observed value.

14.
ACS Nano ; 18(41): 28052-28059, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39363581

RESUMO

Interactions between molecular electronic and vibrational states manifest themselves in a variety of forms and have a strong impact on molecular physics and chemistry. For example, the efficiency of energy transfer between organic molecules, ubiquitous in biological systems and in organic optoelectronics, is strongly influenced by vibronic coupling. Using an approach based on scanning tunneling microscope-induced luminescence (STML), we reveal vibronic interactions in optical spectra of a series of single phthalocyanine derivative molecules featuring degenerate or near-degenerate excited states. Based on detailed theoretical simulations, we disentangle spectroscopic signatures belonging to Franck-Condon and Herzberg-Teller vibronic progressions in tip-position-resolved STML spectra, and we directly map out the vibronic coupling between the close-lying excited states of the molecules.

15.
ACS Nano ; 18(20): 13164-13170, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38711331

RESUMO

Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state. We reveal a correlation between the appearance of a Kondo resonance in differential conductance spectroscopy and concurrent characteristic changes captured by the TERS measurements. Through a detailed investigation of various adsorbed and tip-contacted PTCDA scenarios, we infer that the Raman scattering on suspended PTCDA is resonant with a higher excited state. Theoretical simulation of the vibrational spectra enables a precise assignment of the individual TERS peaks to high-symmetry Ag modes, including the fingerprints of the observed spin state. These findings highlight the potential of TERS in capturing complex interactions between charge, spin, and photophysical properties in nanoscale molecular systems and suggest a pathway for designing single-molecule spin-optical devices.

16.
ACS Appl Mater Interfaces ; 16(35): 46506-46515, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39158042

RESUMO

Organic lasers have attracted increasing attention owing to their superior characteristics such as lightweight, low-cost manufacturing, high mechanical flexibility, and high emission-wavelength tunability. Recent breakthroughs include electrically pumped organic laser diodes and an electrically driven organic laser, integrated with an organic light-emitting diode pumping. However, the availability of efficient deep blue organic laser chromophores remains limited. In this study, we develop two novel rigid oligophenylenes, end-capped with carbazole and phenylcarbazole groups, to demonstrate exceptional optical and amplified spontaneous emission (ASE) properties. These oligophenylenes are not only solution processable but also exhibit remarkably high solution photoluminescence quantum yields (PLQYs) of 90% and high radiative rates of 1.35 × 109 s-1 in the deep blue range. Our theoretical calculations confirm that the carbazole and phenylcarbazole end groups play a pivotal role in enhancing the optical transitions of the oligophenylene laser chromophores, thereby elevating their emission oscillator strengths. Remarkably, these materials demonstrate low solid-state ASE threshold values of 1.0 and 1.5 µJ/cm2 (at 431 and 418 nm, respectively). To the best of our knowledge, these ASE thresholds represent the lowest reported at these specific ASE wavelengths in the literature, regardless of whether they are solution-processed or thermally evaporated films. Furthermore, they exhibit excellent thermal and photostability, low triplet quantum yields, as well as negligible overlap of excited-state absorption within the ASE emission region, making them excellent candidates for a new class of deep blue materials for organic lasers. By integrating insights from theoretical calculations and experimental validation, our study provides a comprehensive understanding of the design principles behind these high-performing organic laser chromophores, paving the way for the development of advanced organic lasers with enhanced performance characteristics.

17.
ACS Nano ; 16(1): 1082-1088, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34919384

RESUMO

Entanglement of excitons holds great promise for the future of quantum computing, which would use individual molecular dyes as building blocks of their circuitry. Studying entangled excitonic eigenstates emerging in coupled molecular assemblies in the near-field with submolecular resolution has the potential to bring insight into the photophysics of these fascinating quantum phenomena. In contrast to far-field spectroscopies, near-field spectroscopic mapping permits direct identification of the individual eigenmodes, type of exciton coupling, including excited states otherwise inaccessible in the far field (dark states). Here we combine tip-enhanced spectromicroscopy with atomic force microscopy to inspect delocalized single-exciton states of charged molecular assemblies engineered from individual perylenetetracarboxylic dianhydride (PTCDA) molecules. Hyperspectral mapping of the eigenstates and comparison with calculated many-body optical transitions reveals a second low-lying excited state of the anion monomers and its role in the exciton entanglement within the assemblies. We demonstrate control over the exciton coupling by switching the assembly charge states. Our results reveal the possibility of tailoring excitonic properties of organic dye aggregates for advanced functionalities and establish the methodology to address them individually at the nanoscale.

18.
Nat Commun ; 13(1): 6008, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224183

RESUMO

Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy.

19.
J Phys Chem Lett ; 13(26): 6003-6010, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35737902

RESUMO

In this study, a set of 10 positional indolocarbazole (ICz) isomers substituted with dicyanomethylene groups connected via para or meta positions are computationally investigated with the aim of exploring the efficiency of structural isomerism and substitution position in controlling their optical and electronic properties. Unrestricted density functional theory (DFT), a spin-flip time-dependent DFT approach, and the multireference CASSCF/NEVPT2 method have been applied to correlate the diradical character with the energetic trends (i.e., singlet-triplet energy gaps). In addition, the nucleus-independent chemical shift together with ACID plots and Raman intensity calculations were used to strengthen the relationship between the diradical character and (anti)aromaticity. Our study reveals that the substitution pattern and structural isomerism represent a very effective way to tune the diradical properties in ICz-based systems with meta-substituted systems with a V-shaped structure displaying the largest diradical character. Thus, this work contributes to the elucidation of the challenging chemical reactivity and physical properties of diradicaloid systems, guiding experimental chemists to produce new molecules with desirable properties.

20.
ACS Nano ; 15(4): 7694-7699, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793192

RESUMO

Charged optical excitations (trions) generated by charge carrier injection are crucial for emerging optoelectronic technologies as they can be produced and manipulated by electric fields. Trions and neutral excitons can be efficiently induced in single molecules by means of tip-enhanced spectromicroscopic techniques. However, little is known of the exciton-trion dynamics at single molecule level as this requires methods permitting simultaneous subnanometer and subnanosecond characterization. Here, we investigate exciton-trion dynamics by phase fluorometry, combining radio frequency modulated scanning tunnelling luminescence with time-resolved single photon detection. We generate excitons and trions in single Zinc Phthalocyanine (ZnPc) molecules on NaCl/Ag(111), and trace the evolution of the system in the picosecond range. We explore the dependence of effective lifetimes on bias voltage and describe the conversion mechanism from neutral excitons to trions, via charge capture, as the primary pathway to trion formation. We corroborate the dynamics of the system by a causally deterministic four-state model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA