Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(1): 100453, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470534

RESUMO

The eye lens is responsible for focusing and transmitting light to the retina. The lens does this in the absence of organelles, yet maintains transparency for at least 5 decades before onset of age-related nuclear cataract (ARNC). It is hypothesized that oxidative stress contributes significantly to ARNC formation. It is in addition hypothesized that transparency is maintained by a microcirculation system that delivers antioxidants to the lens nucleus and exports small molecule waste. Common data-dependent acquisition methods are hindered by dynamic range of lens protein expression and provide limited context to age-related changes in the lens. In this study, we utilized data-independent acquisition mass spectrometry to analyze the urea-insoluble membrane protein fractions of 16 human lenses subdivided into three spatially distinct lens regions to characterize age-related changes, particularly concerning the lens microcirculation system and oxidative stress response. In this pilot cohort, we measured 4788 distinct protein groups, 46,681 peptides, and 7592 deamidated sequences, more than in any previous human lens data-dependent acquisition approach. Principally, we demonstrate that a significant proteome remodeling event occurs at approximately 50 years of age, resulting in metabolic preference for anaerobic glycolysis established with organelle degradation, decreased abundance of protein networks involved in calcium-dependent cell-cell contacts while retaining networks related to oxidative stress response. Furthermore, we identified multiple antioxidant transporter proteins not previously detected in the human lens and describe their spatiotemporal and age-related abundance changes. Finally, we demonstrate that aquaporin-5, among other proteins, is modified with age by post-translational modifications including deamidation and truncation. We suggest that the continued accumulation of each of these age-related outcomes in proteome remodeling contribute to decreased fiber cell permeability and result in ARNC formation.


Assuntos
Catarata , Cristalino , Humanos , Proteoma/metabolismo , Cristalino/química , Cristalino/metabolismo , Catarata/metabolismo , Antioxidantes/metabolismo
2.
Expert Rev Proteomics ; 18(2): 119-135, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33849365

RESUMO

INTRODUCTION: The goal of this review is to highlight the triumphs and frontiers in measurement of the lens proteome as it relates to onset of age-related nuclear cataract. As global life expectancy increases, so too does the frequency of age-related nuclear cataracts. Molecular therapeutics do not exist for delay or relief of cataract onset in humans. Since lens fiber cells are incapable of protein synthesis after initial maturation, age-related changes in proteome composition and post-translational modification accumulation can be measured with various techniques. Several of these modifications have been associated with cataract onset. AREAS COVERED: We discuss the impact of long-lived proteins on the lens proteome and lens homeostasis as well as proteomic techniques that may be used to measure proteomes at various levels of proteomic specificity and spatial resolution. EXPERT OPINION: There is clear evidence that several proteome modifications are correlated with cataract formation. Past studies should be enhanced with cutting-edge, spatially resolved mass spectrometry techniques to enhance the specificity and sensitivity of modification detection as it relates to cataract formation.


Assuntos
Catarata , Cristalino , Humanos , Espectrometria de Massas , Proteoma , Proteômica
3.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693476

RESUMO

Background: The wide dynamic range of circulating proteins coupled with the diversity of proteoforms present in plasma has historically impeded comprehensive and quantitative characterization of the plasma proteome at scale. Automated nanoparticle (NP) protein corona-based proteomics workflows can efficiently compress the dynamic range of protein abundances into a mass spectrometry (MS)-accessible detection range. This enhances the depth and scalability of quantitative MS-based methods, which can elucidate the molecular mechanisms of biological processes, discover new protein biomarkers, and improve comprehensiveness of MS-based diagnostics. Methods: Investigating multi-species spike-in experiments and a cohort, we investigated fold-change accuracy, linearity, precision, and statistical power for the using the Proteograph™ Product Suite, a deep plasma proteomics workflow, in conjunction with multiple MS instruments. Results: We show that NP-based workflows enable accurate identification (false discovery rate of 1%) of more than 6,000 proteins from plasma (Orbitrap Astral) and, compared to a gold standard neat plasma workflow that is limited to the detection of hundreds of plasma proteins, facilitate quantification of more proteins with accurate fold-changes, high linearity, and precision. Furthermore, we demonstrate high statistical power for the discovery of biomarkers in small- and large-scale cohorts. Conclusions: The automated NP workflow enables high-throughput, deep, and quantitative plasma proteomics investigation with sufficient power to discover new biomarker signatures with a peptide level resolution.

4.
Invest Ophthalmol Vis Sci ; 63(8): 5, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816045

RESUMO

Purpose: To spatially map aquaporin-5 (AQP5) expression in the bovine lens, molecularly characterize cytoplasmic AQP5-containing vesicles in the outer cortex, and elucidate AQP5 membrane trafficking mechanisms. Methods: Immunofluorescence was performed on bovine lens cryosections using AQP5, TOMM20, COX IV, calnexin, LC3B, Sec22ß, LIMP-2, and connexin 50 antibodies and the membrane dye CM-DiI. AQP5 plasma membrane insertion was defined via line expression profile analysis. Transmission electron microscopy (TEM) was performed on bovine lens sections to examine cytoplasmic organelle morphology and subcellular localization in cortical fiber cells. Bovine lenses were treated with 10-nM bafilomycin A1 or 0.1% dimethyl sulfoxide vehicle control for 24 hours in ex vivo culture to determine changes in AQP5 plasma membrane expression. Results: Immunofluorescence analysis revealed cytoplasmic AQP5 expression in lens epithelial cells and differentiating fiber cells. In the lens cortex, complete AQP5 plasma membrane insertion occurs at r/a = 0.951 ± 0.005. AQP5-containing cytoplasmic vesicles are spheroidal in morphology with linear extensions, express TOMM20, and contain LC3B and LIMP-2, but not Sec22ß, as fiber cells mature. TEM analysis revealed complex vesicular assemblies with congruent subcellular localization to AQP5-containing cytoplasmic vesicles. AQP5-containing cytoplasmic vesicles appear to dock with the plasma membrane. Bafilomycin A1 treatment reduced AQP5 plasma membrane expression by 27%. Conclusions: AQP5 localizes to spheroidal, linear cytoplasmic vesicles in the differentiating bovine lens fiber cells. During fiber cell differentiation, these vesicles incorporate LC3B and presumably fuse with LIMP-2-positive lysosomes. Our data suggest that AQP5 to the plasma membrane through lysosome-associated unconventional protein secretion, a novel mechanism of AQP5 trafficking.


Assuntos
Aquaporina 5 , Cristalino , Animais , Aquaporina 5/metabolismo , Bovinos , Membrana Celular/metabolismo , Córtex do Cristalino/metabolismo , Cristalino/metabolismo , Transporte Proteico
5.
J Am Soc Mass Spectrom ; 32(12): 2755-2765, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705440

RESUMO

The ocular lens proteome undergoes post-translational and progressive degradation as fiber cells age. The oldest fiber cells and the proteins therein are present at birth and are retained through death. Transparency of the lens is maintained in part by the high abundance Crystallin family proteins (up to 300 mg/mL), which establishes a high dynamic range of protein abundance. As a result, previous data-dependent analysis (DDA) measurements of the lens proteome are less equipped to identify the lowest abundance proteins. To probe more deeply into the lens proteome, we measured the insoluble lens proteome of an 18-year-old human with DDA and data-independent analysis (DIA) methods. By applying more recent library-free DIA search methods, 5,161 protein groups, 50,386 peptides, and 4,960 deamidation sites were detected: significantly outperforming the quantity of identifications in using DDA and pan-human DIA library searches. Finally, by segmenting the lens into multiple fiber cell-age-related regions, we uncovered cell-age-related changes in proteome composition and putative function.


Assuntos
Senescência Celular/fisiologia , Proteínas do Olho/análise , Cristalino/química , Espectrometria de Massas/métodos , Proteoma/análise , Adolescente , Algoritmos , Cromatografia Líquida , Bases de Dados de Proteínas , Proteínas do Olho/química , Humanos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteoma/química
6.
Invest Ophthalmol Vis Sci ; 62(12): 25, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554179

RESUMO

Purpose: The presence of a physical barrier to molecular diffusion through lenticular extracellular space has been repeatedly detected. This extracellular diffusion barrier has been proposed to restrict the movement of solutes into the lens and to direct nutrients into the lens core via the sutures at both poles. The purpose of this study is to characterize the molecular components that could contribute to the formation of this barrier. Methods: Three distinct regions in the bovine lens cortex were captured by laser capture microdissection guided by dye penetration. Proteins were digested by Lys C and trypsin. Mass spectrometry-based proteomic analysis followed by gene ontology and protein interaction network analysis was performed. Results: Dye penetration showed that fiber cells first shrink the extracellular spaces of the broad sides followed by closure of the extracellular space between narrow sides at a normalized lens distance (r/a) of 0.9. Accompanying the closure of extracellular space of the broad sides, dramatic proteomic changes were detected, including upregulation of several cell junctional proteins. AQP0 and its interacting partners, Ezrin and Radixin, were among a few proteins that were upregulated, accompanying the closure of extracellular space of the narrow sides, suggesting a particularly important role for AQP0 in controlling the narrowing of the extracellular spaces between fiber cells. The results also provided important information related to biological processes that occur during fiber cell differentiation such as organelle degradation, cytoskeletal remodeling, and glutathione synthesis. Conclusions: The formation of a lens extracellular diffusion barrier is accompanied by significant membrane and cytoskeletal protein remodeling.


Assuntos
Membrana Celular/metabolismo , Cristalinas/metabolismo , Espaço Extracelular/metabolismo , Cápsula do Cristalino/metabolismo , Cristalino/metabolismo , Animais , Aquaporinas/metabolismo , Transporte Biológico , Bovinos , Cromatografia Líquida , Proteínas do Citoesqueleto/metabolismo , Difusão , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal , Mapas de Interação de Proteínas , Proteômica , Espectrometria de Massas em Tandem , Xantenos/metabolismo
7.
J Mass Spectrom ; 56(12): e4798, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881479

RESUMO

Imaging mass spectrometry (IMS) allows the location and abundance of lipids to be mapped across tissue sections of human retina. For reproducible and accurate information, sample preparation methods need to be optimized. Paraformaldehyde fixation of a delicate multilayer structure like human retina facilitates the preservation of tissue morphology by forming methylene bridge crosslinks between formaldehyde and amine/thiols in biomolecules; however, retina sections analyzed by IMS are typically fresh-frozen. To determine if clinically significant inferences could be reliably based on fixed tissue, we evaluated the effect of fixation on analyte detection, spatial localization, and introduction of artifactual signals. Hence, we assessed the molecular identity of lipids generated by matrix-assisted laser desorption ionization (MALDI-IMS) and liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) for fixed and fresh-frozen retina tissues in positive and negative ion modes. Based on MALDI-IMS analysis, more lipid signals were observed in fixed compared with fresh-frozen retina. More potassium adducts were observed in fresh-frozen tissues than fixed as the fixation process caused displacement of potassium adducts to protonated and sodiated species in ion positive ion mode. LC-MS/MS analysis revealed an overall decrease in lipid signals due to fixation that reduced glycerophospholipids and glycerolipids and conserved most sphingolipids and cholesteryl esters. The high quality and reproducible information from untargeted lipidomics analysis of fixed retina informs on all major lipid classes, similar to fresh-frozen retina, and serves as a steppingstone towards understanding of lipid alterations in retinal diseases.


Assuntos
Lipídeos , Retina , Espectrometria de Massas em Tandem , Fixação de Tecidos , Cromatografia Líquida , Humanos , Potássio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA