RESUMO
Pro-inflammatory microglia mainly rely on glycolysis to maintain cytokine production during ischemia, accompanied by an increase in inducible nitric oxide synthase (iNOS) and monocarboxylate transporter 1 (MCT1). The role of energy metabolism in the pro-inflammatory response of microglia is currently unclear. In this study, we tested the response of microglia in mice after cerebral ischemia and simulated an energy environment in vitro using low glucose culture medium. The research results indicate that the expression levels of iNOS and arginase 1 (ARG1) increase in the ischemic mouse brain, but the upregulation of MCT1 expression is mainly present in iNOS positive microglia. In microglia exposed to low glucose conditions, iNOS and MCT1 levels increased, while ARG1 levels decreased. Under the same conditions, knocking down MCT1 in microglia leads to a decrease in iNOS levels, while overexpression of MCT1 leads to the opposite result. The use of NF-κB inhibitors reduced the expression levels of iNOS and MCT1 in microglia. In summary, our data indicate that pyruvate maintains and enhances the NF-κB regulated pro-inflammatory response of microglia induced by low glucose.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Microglia/metabolismo , Ácido Pirúvico/metabolismo , Acidente Vascular Cerebral/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Isquemia Encefálica/metabolismoRESUMO
The proliferation speed of live foodborne pathogens is fast. A small number of pathogens will have a great impact on food and the environment if positive samples are not detected timely. In this study, transparent porous hydrogel stir bars, modified by two different phages (corresponding to two different bacteria (Escherichia coli and Hafnia sp)), have been developed for rapid detection of foodborne bacteria. A large number of samples can be analyzed simultaneously with a small animal live imager device to screen out the positive samples, while an adenosine triphosphate (ATP) bioluminescence sensor can be used to quantify the number of bacteria in the positive samples. The phage has good specificity and capture ability to bacteria, which makes the method highly sensitive. In addition, the use of multiple phages also enables the method to detect multiple bacteria simultaneously. The three-dimensional structure of the hydrogel allows it to modify more phages, and its transparent nature also allows the inside bioluminescence to be detected. Both can enhance the sensitivity of the detection. Finally, the reagents needed for bioluminescence, such as d-luciferin, can also be preencapsulated in the hydrogel, thus simplifying the detection step. Under the best conditions, the detection range of the method is 102-108 CFU·mL-1, and the limit of detection is 30 CFU·mL-1 within 11 min. The test results of actual samples show that there is no difference between using the method developed through this study and the traditional plate counting method, but the detection time is greatly shortened.
Assuntos
Bacteriófagos , Escherichia coli , Hidrogéis , Hidrogéis/química , Bacteriófagos/química , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Escherichia coli/química , Medições Luminescentes , Microbiologia de Alimentos/métodos , Trifosfato de Adenosina/análise , Limite de DetecçãoRESUMO
Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.
RESUMO
As cities strive for ambitious increases in tree canopy cover and reductions in anthropogenic volatile organic compound (AVOC) emissions, accurate assessments of the impacts of biogenic VOCs (BVOCs) on air quality become more important. In this study, we aim to quantify the impact of future urban greening on ozone production. BVOC emissions in dense urban areas are often coarsely represented in regional models. We set up a high-resolution (30 m) MEGAN (The Model of Emissions of Gases and Aerosols from Nature version 3.2) to estimate summertime biogenic isoprene emissions in the New York City metro area (NYC-MEGAN). Coupling an observation-constrained box model with NYC-MEGAN isoprene emissions successfully reproduced the observed isoprene concentrations in the city core. We then estimated future isoprene emissions from likely urban greening scenarios and evaluated the potential impact on future ozone production. NYC-MEGAN predicts up to twice as much isoprene emissions in NYC as the coarse-resolution (1.33 km) Biogenic Emission Inventory System version 3.61 (BEIS) on hot summer days. We find that BVOCs drive ozone production on hot summer days, even in the city core, despite large AVOC emissions. If high isoprene emitting species (e.g., oak trees) are planted, future isoprene emissions could increase by 1.4-2.2 times in the city core, which would result in 8-19 ppbv increases in peak ozone on ozone exceedance days with current NOx concentrations. We recommend planting non- or low-isoprene emitting trees in cities with high NOx concentrations to avoid an increase in the frequency and severity of future ozone exceedance events.
Assuntos
Poluentes Atmosféricos , Ozônio , Estações do Ano , Compostos Orgânicos Voláteis , Cidade de Nova Iorque , Poluentes Atmosféricos/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Butadienos/análise , Hemiterpenos/análise , PentanosRESUMO
This three-wave longitudinal study examined whether methylation alterations in promoter exon 1F of a stress-related gene-NR3C1 (NR3C1-1F)-explained the longitudinal associations between childhood maltreatment and adolescent depressive symptoms. A total of 370 Han Chinese adolescents (Mage = 16.31 ± 1.28 years; 51.4% girls) recruited from Shandong, China were tracked from 2018 to 2020. The results showed that the severity of childhood maltreatment, especially that of emotional abuse and physical neglect, conferred risk for adolescent depressive symptoms via reducing NR3C1-1F methylation levels. These mediation effects of NR3C1-1F methylation did not vary between adolescent sex or NR3C1 BclI and Tth111I polymorphisms. The findings highlight how childhood maltreatment contributes to psychopathology development at a biological level.
Assuntos
Maus-Tratos Infantis , Receptores de Glucocorticoides , Feminino , Humanos , Adolescente , Masculino , Criança , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides , Metilação de DNA , Estudos Longitudinais , Depressão/genética , Maus-Tratos Infantis/psicologiaRESUMO
Based on a multiwave, two-year prospective design, this study is the first to examine the extent to which multilocus hypothalamic-pituitary-adrenal axis (HPA axis)-related genetic variants, childhood maltreatment, and recent stress jointly predicted prospective changes in adolescent depressive symptoms. A theory-driven multilocus genetic profile score (MGPS) was calculated to combine the effects of six common polymorphisms within HPA-axis related genes (CRHR1, NR3C1, NR3C2, FKBP5, COMT, and HTR1A) in a sample of Chinese Han adolescents (N = 827; 50.2% boys; Mage = 16.45 ± 1.36 years). The results showed that the three-way interaction of HPA-axis related MGPS, childhood maltreatment and recent interpersonal, but not noninterpersonal, stress significantly predicted prospective changes in adolescent depressive symptoms. For adolescents with high but not low HPA-axis related MGPS, exposure to severe childhood maltreatment predisposed individuals more vulnerable to recent interpersonal stress, exhibiting greater prospective changes in adolescent depressive symptoms. The findings provide preliminary evidence for the cumulative risk mechanism regarding gene-by-environment-by-environment (G × E1 × E2) interactions that underlie the longitudinal development of adolescent depressive symptoms and show effects specific to interpersonal stress.
RESUMO
INTRODUCTION: This study aimed to analyze the comprehensive maxillofacial features of patients with skeletal Class III malocclusion and facial asymmetry to develop a classification system for diagnosis and surgical planning. METHODS: A total of 161 adult patients were included, with 121 patients in the asymmetry group (menton deviation >2 mm) and 40 patients in the symmetry group (menton deviation ≤2 mm). Twenty-eight variables were determined, including transverse translation, roll and yaw of each facial unit, transverse width, mandibular morphology, and transverse dental compensation. Principal component (PC) analysis was conducted to extract PCs, and cluster analysis was performed using these components to classify the asymmetry group. A decision tree was constructed on the basis of the clustering results. RESULTS: Six PCs were extracted, explaining 80.622% of the data variability. The asymmetry group was classified into 4 subgroups: (1) atypical type (15.7%) showed an opposite roll direction of maxillary dentition than of menton deviation; (2) compound type (34.71%) demonstrated significant ramus height differences, maxillary roll, and mandibular roll and yaw; (3) mandibular yaw type (44.63%) showed slight mandibular yaw without mandibular morphology asymmetry; and (4) maxillary-shift type (4.96%) shared similarities with the compound type but showed significant maxillary translation. The classification and regression tree model achieved a prediction accuracy of up to 85.11%. CONCLUSIONS: This study identified 4 distinct phenotypes using cluster analysis and proposed tailored treatment recommendations on the basis of their specific characteristics. The classification results emphasized the importance of spatial displacement features, especially mandibular yaw, in diagnosing facial asymmetry. The established classification and regression tree model enables clinicians to identify patients conveniently.
Assuntos
Assimetria Facial , Má Oclusão Classe III de Angle , Humanos , Má Oclusão Classe III de Angle/diagnóstico por imagem , Assimetria Facial/classificação , Assimetria Facial/diagnóstico por imagem , Análise por Conglomerados , Feminino , Masculino , Adulto , Adulto Jovem , Mandíbula/diagnóstico por imagem , Mandíbula/patologia , Análise de Componente Principal , Adolescente , Maxila/diagnóstico por imagemRESUMO
Air quality policies have made substantial gains by reducing pollutant emissions from the transportation sector. In March 2020, New York City's activities were severely curtailed in response to the COVID-19 pandemic, resulting in 60-90% reductions in human activity. We continuously measured major volatile organic compounds (VOCs) during January-April 2020 and 2021 in Manhattan. Concentrations of many VOCs decreased significantly during the shutdown with variations in daily patterns reflective of human activity perturbations, resulting in a temporary â¼28% reduction in chemical reactivity. However, the limited effect of these dramatic measures was outweighed by larger increases in VOC-related reactivity during the anomalously warm spring 2021. This emphasizes the diminishing returns from transportation-focused policies alone and the risk of increased temperature-dependent emissions undermining policy-related gains in a warming climate.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Pandemias , COVID-19/epidemiologia , Poluição do Ar/análise , Estações do Ano , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Emissões de Veículos/análiseRESUMO
PURPOSE: This study aimed to identify the heterogeneity of dyadic quality of life (QoL) profiles, determine whether these profiles differ in terms of demographic and medical factors, neuroticism, resilience, and family functioning, and explore the combined effect of patient and caregiver neuroticism, resilience, and family functioning on dyadic QoL profiles. METHODS: A cross-sectional study was conducted with 304 advanced lung cancer patient-caregiver dyads. Self-report questionnaires were administered to patient-caregiver dyads to assess demographic and medical characteristics, neuroticism, resilience, family functioning, and QoL. RESULTS: The latent profile analysis identified four subgroups of dyadic QoL: patient-low-caregiver-high profile (38.82%), patient-high-caregiver-high profile (22.37%), patient-high-caregiver-low profile (19.74%), and patient-low-caregiver-low profile (19.08%). Additionally, when both patients and their caregivers had a high level of neuroticism or low level of resilience and low family functioning, compared with only member having them, there was a higher risk of poorer dyadic QoL. CONCLUSIONS: Our study identified the four heterogeneities of dyadic QoL profiles among advanced lung cancer patient-caregiver dyads. Future dyadic interventions should consider the heterogeneity of dyadic QoL in this population and prioritize patient-caregiver dyads at risk of poor dyadic QoL. Furthermore, when high neuroticism, low resilience, or family functioning coexist between patients and their caregivers, both parties exhibit much lower dyadic QoL.
Assuntos
Neoplasias Pulmonares , Humanos , Cuidadores , Qualidade de Vida , Estudos Transversais , AutorrelatoRESUMO
BACKGROUND: In recent years, N6-methyladenosine (m6A) methylation modification of mRNA has been studied extensively. It has been reported that m6A determines mRNA fate and participates in many cellular functions and reactions, including oxidative stress. The PLOD2 gene encodes a protein that plays a key role in tissue remodeling and fibrotic processes. METHODS: The m6A methylation and expression levels of PLOD2 were determined by m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative polymerase chain reaction (qPCR) in the testes of varicocele rats compared with control. To determine whether IGF2BP2 had a targeted effect on the PLOD2 mRNA, RNA immunoprecipitation-qPCR (RIP-qPCR) and luciferase assays were performed. CRISPR/dCas13b-ALKBH5 could downregulate m6A methylation level of PLOD2, which plays an important role in PLOD2-mediated cell proliferation and apoptosis in GC-2 cells. RESULTS: PLOD2 was frequently exhibited with high m6A methylation and expression level in the testes of varicocele rats compared with control. In addition, we found that IGF2BP2 binds to the m6A-modified 3' untranslated region (3'-UTR) of PLOD2 mRNA, thereby positively regulating its mRNA stability. Targeted specific demethylation of PLOD2 m6A by CRISPR/dCas13b-ALKBH5 system can significantly decrease the m6A and expression level of PLOD2. Furthermore, demethylation of PLOD2 mRNA dramatically promote GC-2 cell proliferation and inhibit cell apoptosis under oxidative stress. CONCLUSION: As a result, we found that varicocele-induced oxidative stress promoted PLOD2 expression level via m6A methylation modification. In addition, targeting m6A demethylation of PLOD2 by CRISPR/dCas13b-ALKBH5 system can regulate GC-2 cell proliferation and apoptosis under oxidative stress. Taken together, our study has acquired a better understanding of the mechanisms underlying male infertility associated with oxidative stress, as well as a novel therapeutic target for male infertility.
Assuntos
Infertilidade Masculina , Varicocele , Masculino , Animais , Ratos , Humanos , Espermatócitos , Regiões 3' não Traduzidas , Adenosina , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Proteínas de Ligação a RNARESUMO
Genetic variants that regulate hypothalamic-pituitary-adrenal (HPA) axis function have been demonstrated to moderate the association between parenting and mental health. However, extant research has focused primarily on (i) effects of individual genes or (ii) maternal as opposed to paternal parenting. Using a multilocus genetic profile score (MGPS) approach, the current study is the first to examine the moderation effect of multilocus HPA-axis related genetic variants on the association of both maternal and paternal parenting with adolescent internalizing and externalizing symptoms. In a sample of 772 Chinese Han adolescents (Mage = 16.48 ± 1.40 years; 50.1% girls), a theory-driven MGPS was calculated using six polymorphisms within HPA-axis related genes (CRHR1, NR3C1, NR3C2, FKBP5, COMT, and HT1RA). Results showed that the MGPS interacted with both maternal and paternal parenting in the association with adolescent internalizing symptoms, but not externalizing symptoms. Consistent with the differential susceptibility model, adolescents with high versus low MGPS exhibited not only more internalizing symptoms when exposed to low quality of parenting but also less internalizing symptoms when exposed to high quality of parenting. The current findings highlight the potential value of using a multilocus approach to understanding gene-by-environment interaction (G×E) effects underlying mental health. Within such G×E effects, not only maternal but also paternal parenting should be addressed.
Assuntos
Sistema Hipotálamo-Hipofisário , Poder Familiar , Feminino , Humanos , Criança , Adolescente , Masculino , Estresse Psicológico/psicologia , Sistema Hipófise-Suprarrenal , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Lockdowns and border closures due to COVID-19 imposed mental, social, and financial hardships in many societies. Living with the virus and resuming normal life are increasingly being advocated due to decreasing virus severity and widespread vaccine coverage. However, current trends indicate a continued absence of effective contingency plans to stop the next more virulent variant of the pandemic. The COVID-19-related mask waste crisis has also caused serious environmental problems and virus spreads. It is timely and important to consider how to precisely implement surveillance for the dynamic clearance of COVID-19 and how to efficiently manage discarded masks to minimize disease transmission and environmental hazards. In this viewpoint, we sought to address this issue by proposing an appropriate strategy for intelligent surveillance of infected cases and centralized management of mask waste. Such an intelligent strategy against COVID-19, consisting of wearable mask sample collectors (masklect) and voiceprints and based on the STRONG (Spatiotemporal Reporting Over Network and GPS) strategy, could enable the resumption of social activities and economic recovery and ensure a safe public health environment sustainably.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Máscaras , COVID-19/epidemiologia , COVID-19/prevenção & controle , Saúde PúblicaRESUMO
With the rapid development and widespread application of blockchain technology in recent years, smart contracts running on blockchains often face security vulnerability problems, resulting in significant economic losses. Unlike traditional programs, smart contracts cannot be modified once deployed, and vulnerabilities cannot be remedied. Therefore, the vulnerability detection of smart contracts has become a research focus. Most existing vulnerability detection methods are based on rules defined by experts, which are inefficient and have poor scalability. Although there have been studies using machine learning methods to extract contract features for vulnerability detection, the features considered are singular, and it is impossible to fully utilize smart contract information. In order to overcome the limitations of existing methods, this paper proposes a smart contract vulnerability detection method based on deep learning and multimodal decision fusion. This method also considers the code semantics and control structure information of smart contracts. It integrates the source code, operation code, and control-flow modes through the multimodal decision fusion method. The deep learning method extracts five features used to represent contracts and achieves high accuracy and recall rates. The experimental results show that the detection accuracy of our method for arithmetic vulnerability, re-entrant vulnerability, transaction order dependence, and Ethernet locking vulnerability can reach 91.6%, 90.9%, 94.8%, and 89.5%, respectively, and the detected AUC values can reach 0.834, 0.852, 0.886, and 0.825, respectively. This shows that our method has a good vulnerability detection effect. Furthermore, ablation experiments show that the multimodal decision fusion method contributes significantly to the fusion of different modalities.
RESUMO
The interpersonal theories of depression highlight the role of interpersonal stress and individual's sensitivity to social rejection in the development of depression. However, previous research has tested their respective effects, whereas whether or not these two factors interact to affect depression, especially in ways of differential susceptibility or diathesis-stress, remains unknown. By adopting a morphed facial expressions recognition paradigm, the current study investigated the potential moderating role of perceptual sensitivity to facial expressions, especially that to angry expression which signaled social rejection, in the association between interpersonal stress and adolescent depressive symptoms. A total of 186 Chinese late adolescents (Mage = 21.16 ± 1.81 years; 73.7% females) participated in this study. The results demonstrated that perceptual sensitivity for angry faces, but not sad or happy faces, functioned as a plasticity factor significantly moderating the effect of interpersonal stress on depressive symptoms, which was consistent with hypothesis of differential susceptibility rather than diathesis-stress. No interactions were observed regarding non-interpersonal dimensions. These results were robust and survived a series of sensitivity analyses, including k-fold cross-validation test. The current findings highlight the crucial role of perceptual sensitivity to angry expression in explaining individual differences behind the links between interpersonal stress and adolescent depressive symptoms.
Assuntos
Depressão , Reconhecimento Facial , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Masculino , Suscetibilidade a Doenças , Expressão Facial , Ira , EmoçõesRESUMO
Acne vulgaris, the most common skin disease, can cause substantial economic and psychological impacts to the people it affects, and its accurate grading plays a crucial role in the treatment of patients. In this paper, we firstly proposed an acne grading criterion that considers lesion classifications and a metric for producing accurate severity ratings. Due to similar appearance of acne lesions with comparable severities and difficult-to-count lesions, severity assessment is a challenging task. We cropped facial skin images of several lesion patches and then addressed the acne lesion with a lightweight acne regular network (Acne-RegNet). Acne-RegNet was built by using a median filter and histogram equalization to improve image quality, a channel attention mechanism to boost the representational power of network, a region-based focal loss to handle classification imbalances and a model pruning and feature-based knowledge distillation to reduce model size. After the application of Acne-RegNet, the severity score is calculated, and the acne grading is further optimized by the metadata of the patients. The entire acne assessment procedure was deployed to a mobile device, and a phone app was designed. Compared with state-of-the-art lightweight models, the proposed Acne-RegNet significantly improves the accuracy of lesion classifications. The acne app demonstrated promising results in severity assessments (accuracy: 94.56%) and showed a dermatologist-level diagnosis on the internal clinical dataset.The proposed acne app could be a useful adjunct to assess acne severity in clinical practice and it enables anyone with a smartphone to immediately assess acne, anywhere and anytime.
RESUMO
The growth of the world population leads to an increase in demand for food consumption. Along with the projected reduction in demand for meat products, a search is underway for a new type of food ("novel food"), one of the promising options for which are insects. In 2023 the European Commission has registered flour made from house cricket (Acheta domesticus) as a "novel food" for human consumption. Currently, the amino acid composition of both new types of food and the diet that includes them is not regulated. Accordingly, the potential amino acid imbalance in the diet when entomoprotein is included need to be further investigated. The aim of the study was to characterize the amino acid composition of a simulated diet using protein obtained from house cricket. Material and methods. To assess the balance of diets in terms of amino acid composition, a comparative analysis was made of the actual diet containing protein from traditional foods (scenario 1) and the diet with the likely replacement of beef, pork and poultry with a product containing A. domesticus protein (entomoprotein) (scenario 2). The volume of food consumption has been calculated based on the results of the assessment of a sample survey of household budgets. The study included foods with an established value of annual consumption, that was calculated as daily consumption. The content of essential amino acids in food sources of protein, as well as in the domestic cricket protein, was evaluated using the data from relevant sources. Dietary balance was assessed by calculating its digestibility using data on amino acid scoring, the utility of essential amino acids, the excess content of individual essential amino acids, and the comparable excess content of essential amino acids. Results. We determined the daily consumption volumes of basic foods, formed consumption scenarios, including with the potential use of a protein product based on entomoprotein. Comparative analysis of the amino acid composition of the diet showed significantly higher content (from 1.4 up to 2.9 times) of amino acids in the diet in scenario 2. The results of calculating the amino acid score and utility coefficient showed that a diet using entomoprotein could provide a better usage of amino acids for protein synthesis compared to the «traditional¼ diet, however, the digestibility of protein from the traditional diet is higher compared to entomoprotein (96.8 vs 89.1%). Conclusion. Despite the fact that the utility of essential amino acids in the scenario of replacing meat products with a product containing A. domesticus entomoprotein is higher, while the digestibility of protein is lower, the differences identified are insignificant.
Assuntos
Aminoácidos , Produtos da Carne , Bovinos , Animais , Humanos , Aminoácidos Essenciais , FarinhaRESUMO
Temperature as a typical parameter, which influences the status of living creatures, is essential to life activities and indicates the initial cellular activities. In recent years, the rapid development of nanotechnology provides a new tool for studying temperature variation at the micro- or nano-scales. In this study, an important phenomenon is observed at the cell level using luminescent probes to explore intracellular temperature changes, based on Yb-Er doping nanoparticles with special upconversion readout mode and intensity ratio signals (I525 and I545 ). Further optimization of this four-layer core-shell ratio nanothermometer endows it with remarkable characteristics: super photostability, sensitivity, and protection owing to the shell. Thus this kind of thermal probe has the property of anti-interference to the complex chemical environment, responding exclusively to temperature, when it is used in liquid and cells to reflect external temperature changes at the nanoscale. The intracellular temperature of living RAW and CAOV3 cells are observed to have a resistance mechanism to external stimuli and approach a more favorable temperature, especially for CAOV3 cells with good heat resistance, with the intracellular temperature 4.8 °C higher than incubated medium under 5 °C environment, and 4.4 °C lower than the medium under 60 °C environment.
Assuntos
Luminescência , Nanopartículas , Nanopartículas/química , Nanotecnologia , TemperaturaRESUMO
This study aimed to investigate the effects of dietary Bovine lactoferricin (LFcinB) on the growth performance and non-specific immunity in Macrobrachium rosenbergii. Five experimental diets were 1.0 Bovine lactoferricin (LCB1); 1.5 Bovine lactoferricin (LCB1.5); 2.0 Bovine lactoferricin (LCB2); 2.5 Bovine lactoferricin (LCB2.5); the control group, basal diet without Bovine lactoferricin. A total of 600 prawns were randomly assigned to 5 groups in triplicate in 15 tanks for an 8-week feeding trial. The results showed the final weight, weight gain rate, specific growth rate and survival rate of prawns in the treatment groups were significantly improved versus the control (P < 0.05). The feed conversion ratio was reduced significantly in treatment groups compared to the control (P < 0.05). Compared with the control, alkaline phosphatase (AKP), acid phosphatase (ACP), lysozyme (LZM), catalase (CAT), superoxide dismutase (SOD) activities in the hepatopancreas of the treatment groups were significantly enhanced, and malondialdehyde (MDA) content was reduced significantly (P < 0.05). Compared with the control, the relative expression levels of AKP, ACP, LZM, CAT, SOD, Hsp70, peroxiredoxin-5, Toll, dorsal and relish genes were significantly higher among treatment groups, except for the AKP gene in the LCB1 group and the Hsp70 gene in the LCB1.5 group (P < 0.05). Compared with the control, the relative expression levels of TOR, 4E-BP, eIF4E1α and eIF4E2 genes were significantly enhanced in the LCB1.5 group (P < 0.05). When resistance against Vibrio parahaemolyticus in prawn is considered, higher doses of Bovine lactoferricin show better antibacterial ability. The present study indicated that dietary Bovine lactoferricin could significantly improve the growth performance and improve the antioxidative status of M. rosenbergii. The suitable addition level is 1.5 g/kg. LFcinB has great potential as a new feed additive without the threat of drug resistance.
Assuntos
Palaemonidae , Animais , Água Doce , Superóxido Dismutase/farmacologia , Imunidade InataRESUMO
Overproduction of reactive oxygen species (ROS) induced by atmospheric particles and subsequent inflammatory responses are considered as one of the most important pathological mechanisms with regard to the adverse effects of air pollution exposure. In this study, fine particulate matter (PM2.5) samples were collected at a rural site in Guanzhong Basin, Northwest China, in both summer (August 3-23, 2016) and winter (January 5-February 1, 2017). Then, human bronchial epithelial BEAS-2B cells were exposed to the PM2.5, cultured for 24 h, and then assayed for particle-induced ROS and three inflammatory factors (tumor necrosis-α (TNF-α), interleukin-6 (IL-6), and interferon-γ (IFN-γ)) in vitro. The oxidative potential (OP) induced by winter PM2.5 samples was higher than that induced by summertime samples, whereas inflammatory values showed contrasting seasonal variations. Both OP and inflammatory factors were significantly correlated with most chemical compounds in winter, but not in summer, which was thought to be related mainly to the higher contribution from secondary aerosols formed during the warm season. Source apportionment results showed secondary aerosols formation have significant contribution to OP of PM2.5 in both seasons, but the dominant oxidation processes is different. Secondary nitrates-related process was the major contributors regulating the OP in winter; however, secondary sulfates formation were mainly responsible for the ROS responses in summer. For primary emission, biomass burning, rather than coal emission or vehicle exhaust, was the significant source for OP of PM2.5 in winter. In most cases, the source contribution of each inflammatory factor was similar to that of the ROS. Our results highlighted the significant health risk of atmospheric aerosols from biomass burning in the rural regions of Guanzhong Basin, Northwest China.