Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Am Chem Soc ; 146(22): 15515-15524, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785086

RESUMO

The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.

2.
Small ; 20(27): e2311335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38286638

RESUMO

Modulating the chemical composition and structure has been considered as one of the most promising strategies for developing high-efficient water splitting catalysts. Here, a single-atom Ru doped Ni2P/Fe3P catalyst is synthesized by introducing the dispersed Ru atoms to adjust Ni2P/Fe3P heterostructure. Single atom Ru provides effective hydrogen evolution reaction (HER) active sites for boosting catalytic activities. The catalyst with only 0.2 wt.% content of Ru exhibits an overpotential of 19.3 mV at 10 mA cm-2, which is obviously lower than 146.1 mV of Ni2P/Fe3P. Notably, an alkaline overall water electrolyzer based on Ru-Ni2P/Fe3P catalysts achieves a cell voltage of 1.47 V and operates over 600 h at 10 mA cm-2, which is superior to that of benchmark RuO2//Pt/C (1.61 V). The theoretical calculations further confirm that Ru single atom doping can effectively optimize the hydrogen/water adsorption free energy of the active site and therefore improve the HER activity of heterostructure. This work provides a valuable reference to design high-activity and durability catalyst for water splitting through the double modulation of interface-effect and atomic doping.

3.
Langmuir ; 40(26): 13688-13698, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38902198

RESUMO

The structure-property relationship of poly(vinyl chloride) (PVC)/CaCO3 nanocomposites is investigated by all-atom molecular dynamics (MD) simulations. MD simulation results indicate that the dispersity of nanofillers, interfacial bonding, and chain mobility are imperative factors to improve the mechanical performance of nanocomposites, especially toughness. The tensile behavior and dissipated work of the PVC/CaCO3 model demonstrate that 12 wt % CaCO3 modified with oleate anion and dodecylbenzenesulfonate can impart high toughness to PVC due to its good dispersion, favorable interface interaction, and weak migration of PVC chains. Under the guidance of MD simulation, we experimentally prepared a transparent PVC/CaCO3 nanocomposite with good mechanical properties by in situ polymerization of monodispersed CaCO3 in vinyl chloride monomers. Interestingly, experimental tests indicate that the optimum toughness of a nanocomposite (a 368% increase in the elongation at break and 204% improvement of the impact strength) can be indeed realized by adding 12 wt % CaCO3 modified with oleic acid and dodecylbenzenesulfonic acid, which is remarkably consistent with the MD simulation prediction. In short, this work provides a proof-of-concept of using MD simulation to guide the experimental synthesis of PVC/CaCO3 nanocomposites, which can be considered as an example to develop other functional nanocomposites.

4.
Angew Chem Int Ed Engl ; 63(25): e202404726, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622997

RESUMO

Covalent organic frameworks (COFs) have recently shown great potential for photocatalytic hydrogen production. Currently almost all reports are focused on two-dimensional (2D) COFs, while the 3D counterparts are rarely explored due to their non-conjugated frameworks derived from the sp3 carbon based tetrahedral building blocks. Here, we rationally designed and synthesized a series of fully conjugated 3D COFs by using the saddle-shaped cyclooctatetrathiophene derivative as the building block. Through molecular engineering strategies, we thoroughly discussed the influences of key factors including the donor-acceptor structure, hydrophilicity, specific surface areas, as well as the conjugated/non-conjugated structures on their photocatalytic hydrogen evolution properties. The as-synthesized fully conjugated 3D COFs could generate the hydrogen up to 40.36 mmol h-1 g-1. This is the first report on intrinsic metal-free 3D COFs in photocatalytic hydrogen evolution application. Our work provides insight on the structure design of 3D COFs for highly-efficient photocatalysis, and also reveals that the semiconducting fully conjugated 3D COFs could be a useful platform in clear energy-related fields.

5.
Angew Chem Int Ed Engl ; : e202407812, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771728

RESUMO

Decoration of an axial coordination ligand (ACL) on the active metal site is a highly effective and versatile strategy to tune activity of single-atom catalysts (SACs). However, the regulation mechanism of ACLs on SACs is still incompletely known. Herein, we investigate diversified combinations of ACL-SACs, including all 3d-5d transition metals and ten prototype ACLs. We identify that ACLs can weaken the adsorption capability of the metal atom (M) by raising the bonding energy levels of the M-O bond while enhancing dispersity of the d orbital of M. Through examination of various local configurations and intrinsic parameters of ACL-SACs, a general structure descriptor σ is constructed to quantify the structure-activity relationship of ACL-SACs which solely based on a few key intrinsic features. Importantly, we also identified the axial ligand descriptor σACL, as a part of σ, which can serve as a potential descriptor to determine the rate-limiting steps (RLS) of ACL-SACs in experiment. And we predicted several ACL-SACs, namely, CrN4-, FeN4-, CoN4-, RuN4-, RhN4-, OsN4-, IrN4- and PtN4-ACLs, that entail markedly higher activities than the benchmark catalysts of Pt and IrO2, thereby supporting that the general descriptor σ can provide a simple and cost-effective method to assess efficient electrocatalysts.

6.
Angew Chem Int Ed Engl ; 63(16): e202401706, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38419479

RESUMO

Rigid three-dimensional (3D) polycyclic propellanes have garnered interest due to their unique conformational spaces, which display great potential use in selectivity, separation and as models to study through-space electronic interactions. Herein we report the synthesis of a novel rigid propellane, trinaphtho[3.3.3]propellane triimide, which comprises three imide groups embedded on a trinaphtho[3.3.3]propellane. This propellane triimide exhibits large bathochromic shift, amplified molar absorptivity, enhanced fluorescence, and lower reduction potential when compared to the subunits. Computational and experimental studies reveal that the effective through-space π-orbitals interacting (homoconjugation) occurs between the subunits. Single-crystal XRD analysis reveals that the propellane triimide has a highly quasi-D3h symmetric skeleton and readily crystallizes into different superstructures by changing alkyl chains at the imide positions. In particular, the porous 3D superstructure with S-shaped channels is promising for taking up ethane (C2H6) with very good selectivity over ethylene (C2H4), which can purify C2H4 from C2H6/C2H4 in a single separation step. This work showcases a new class of rare 3D polycyclic propellane with intriguing electronic and supramolecular properties.

7.
Chem Soc Rev ; 51(6): 2031-2080, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35226024

RESUMO

Sensing analysis is significantly important for human health and environmental safety, and has gained increasing concern. As a promising material, porous organic polymers (POPs) have drawn widespread attention due to the availability of plentiful building blocks and their tunable structures, porosity and functions. Moreover, the permanent porous nature could provide a micro-environment to interact with guest molecules, rendering POPs attractive for application in the sensing field. In this review, we give a comprehensive overview of POPs as a platform for sensing applications. POP-based sensors are mainly divided into five categories, including fluorescence turn-on sensors, fluorescence turn-off sensors, ratiometric fluorescent sensors, colorimetric sensors and chemiresistive sensors, and their various sensing applications in detecting explosives, metal ions, anions, small molecules, biological molecules, pH changes, enantiomers, latent fingerprints and thermosensation are summarized. The different structure-based POPs and their corresponding synthetic strategies as well as the related sensing mechanisms mainly including energy transfer, donor-acceptor electron transfer, absorption competition quenching and inner filter effect are also involved in the discussion. Finally, the future outlook and perspective are addressed briefly.


Assuntos
Metais , Polímeros , Colorimetria , Humanos , Íons , Porosidade
8.
Angew Chem Int Ed Engl ; 62(4): e202216751, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36428273

RESUMO

The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493 mW cm-2 . DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.

9.
Angew Chem Int Ed Engl ; 62(49): e202314539, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37880874

RESUMO

The semiconducting properties and applications of three dimensional (3D) covalent organic frameworks (COFs) are greatly hampered because of their long-ranged non-conjugated skeletons and relatively unstable linkages. Here, a robust imidazole-linked fully conjugated 3D covalent organic framework (BUCT-COF-7) is synthesized through the one-pot multicomponent Debus-Radziszewski reaction of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene, pyrene-4,5,9,10-tetraone, and ammonium acetate. The semiconducting BUCT-COF-7, as a metal-free catalyst, shows excellent two electron oxygen reduction reaction (ORR) activity in alkaline medium with high hydrogen peroxide (H2 O2 ) selectivity of 83.4 %. When the BUCT-COF-7 as cathode catalyst is assembled into the electrolyzer, the devices showed high electrochemical production rate of H2 O2 up to 326.9 mmol g-1 h-1 . The accumulative amount of H2 O2 could totally degrade the dye methylene blue via Fenton reaction for wastewater treatment. This is the first report about intrinsic 3D COFs for efficient electrochemical synthesis of H2 O2 , revealing the promising applications of fully conjugated 3D COFs in the environment-related field.

10.
Angew Chem Int Ed Engl ; 62(6): e202216041, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478109

RESUMO

To achieve practical application of fuel cell, it is vital to develop highly efficient and durable Pt-free catalysts. Herein, we prepare atomically dispersed ZnNC catalysts with Zn-Pyrrolic-N4 moieties and abundant mesoporous structure. The ZnNC-based anion-exchange membrane fuel cell (AEMFC) presents an ultrahigh peak power density of 1.63 and 0.83 W cm-2 in H2 -O2 and H2 -air (CO2 -free), and also exhibits long-term stability with more than 120 and 100 h for H2 -air (CO2 -free) and H2 -O2 , respectively. Density functional calculations further unveil that the Zn-Pyrrolic-N4 structure is the origin of high activity of as-synthesized ZnNC catalyst, while the Zn-Pyridinic-N4 moiety is inactive for oxygen reduction reaction (ORR), which successfully explain the puzzle why most Zn-metal-organic framework -derived ZnNC catalysts in previous reports did not present good ORR activity because of their Zn-Pyridinic-N4 moieties. This work offers a new route for speeding up development of AEMFCs.

11.
J Am Chem Soc ; 143(38): 15562-15566, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533316

RESUMO

A first example of an sp2 carbon-conjugated three-dimensional (3D) covalent organic framework (COF) (BUCT-COF-4) is synthesized via the Knoevenagel condensation of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene and 1,4-phenylenediacetonitrile. Ascribed to the extended π-conjugation and long-range ordered structures, BUCT-COF-4 displays high Hall electron mobility of 1.97 cm2 V-1 s-1 at room temperature. After it is doped with iodine, the material not only exhibits an enhanced electron mobility up to 2.62 cm2 V-1 s-1 in ambient air but also presents an unexpected metal-free ferromagnetic phase transition arising from the formation of aligned spins unidirectional across the whole sp2 carbon-conjugated 3D framework. This is the first report of a ferromagnetic phenomenon in 3D COF materials, which would broaden promising applications and open a new frontier in COF materials.

12.
Chemistry ; 27(47): 12012-12018, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34042231

RESUMO

Currently, most organic semiconducting materials (OSMs) are π-conjugated structures in one or two dimension (2D), where the lack of layer-layer π-conjugation connection greatly blocks their electron delocalization and transport. The 3D fully conjugated materials could solve this issue because they can provide efficient charge-transport pathways throughout the whole 3D skeleton, in which the suitable 3D building block is the key to the development of fully conjugated 3D OSMs. Cyclooctatetraene (COT) and its derivatives are good candidates due to their π-conjugation with 3D saddle-shaped architecture. In this Concept, we discuss the key features of saddle-shaped COT-based derivatives and their synthetic strategy, then we present the current development of using the COT derivatives as building blocks to construct the 3D fully conjugated organic small compound- and polymer-based OSMs. The properties and perspectives of these OSMs in photovoltaics, electro-catalysis and electrical conductivities are also discussed. These recent advances in the developing 3D fully conjugated materials could potentially open up a new frontier in the design of OSMs.

13.
Proc Natl Acad Sci U S A ; 115(26): 6626-6631, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891686

RESUMO

It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm-2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

14.
Angew Chem Int Ed Engl ; 60(17): 9321-9325, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33527686

RESUMO

Although π-conjugated two dimensional (2D) covalent organic frameworks (COFs) have been extensively reported, developing fully π-conjugated 3D COFs is still an extremely difficult problem due to the lack of fully π-conjugated 3D linkers. We synthesize a fully conjugated 3D COF (BUCT-COF-1) by designing a saddle-shaped building block of aldehyde-substituted cyclooctatetrathiophene (COThP)-CHO. As a consequence of the fully conjugated 3D network, BUCT-COF-1 demonstrates ultrahigh Hall electron mobility up to ≈3.0 cm2 V-1 s-1 at room temperature, which is one order of magnitude higher than the current π-conjugated 2D COFs. Temperature-dependent conductivity measurements reveal that the charge carriers in BUCT- COF-1 exhibit the band-like transport mechanism, which is entirely different from the hopping transport phenomena observed in common organic materials. The findings indicate that fully conjugated 3D COFs can achieve electron delocalization and charge-transport pathways within the whole 3D skeleton, which may open up a new frontier in the design of organic semiconducting materials.

15.
J Am Chem Soc ; 142(47): 20257-20269, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33179921

RESUMO

Cationic agents, such as ionic liquids (ILs)-based species, have broad-spectrum antibacterial activities. However, the antibacterial mechanisms lack systematic and molecular-level research, especially for Gram-negative bacteria, which have highly organized membrane structures. Here, we designed a series of flexible fluorescent diketopyrrolopyrrole-based ionic liquid derivatives (ILDs) with various molecular sizes (1.95-4.2 nm). The structure-antibacterial activity relationships of the ILDs against Escherichia coli (E. coli) were systematically studied thorough antibacterial tests, fluorescent tracing, morphology analysis, molecular biology, and molecular dynamics (MD) simulations. ILD-6, with a relatively small molecular size, could penetrate through the bacterial membrane, leading to membrane thinning and intracellular activities. ILD-6 showed fast and efficient antimicrobial activity. With the increase of molecular sizes, the corresponding ILDs were proven to intercalate into the bacterial membrane, leading to the destabilization of the lipid bilayer and further contributing to the antimicrobial activities. Moreover, the antibacterial activity of ILD-8 was limited, where the size was not large enough to introduce significant membrane disorder. Relative antibacterial experiments using another common Gram-negative bacteria, Pseudomonas aeruginosa (PAO1), further confirmed the proposed structure-antibacterial activity relationships of ILDs. More impressively, both ILD-6 and ILD-12 displayed significant in vivo therapeutic effects on the PAO1-infected rat model, while ILD-8 performed poorly, which confirmed the antibacterial mechanism of ILDs and proved their potentials for future application. This work clarifies the interactions between molecular sizes of ionic liquid-based species and Gram-negative bacteria and will provide useful guidance for the rational design of high-performance antibacterial agents.

16.
Chemistry ; 26(18): 4112-4119, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31633243

RESUMO

Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1 O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1 O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1 O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm-2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm-2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1 O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm-2 , which is much lower than the benchmark of IrO2 (+)/Pt(-) counterpart (1.64 V at 10 mA cm-2 ). The excellent performance of the Ru/Cu2+1 O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.

17.
Chemistry ; 26(18): 4128-4135, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31797431

RESUMO

Co-based nanoalloys show potential applications as nanocatalysts for the oxygen reduction reaction (ORR), but improving their activity is still a great challenge. In this paper, a strategy is proposed to design efficient Co-M (M=Au, Ag, Pd, Pt, Ir, and Rh) nanoalloys as ORR catalysts by using density functional theory (DFT) calculations. Through the Sabatier analysis, the overpotential as a function of ΔGOH * is identified as a quantitative descriptor for analyzing the effect of dopants and atomic structures on the activity of the Co-based nanoalloys. By adopting the suitable dopants and atomic structures, ΔGOH * accompanied by overpotential could be adjusted to the optimal range to enhance the activity of the Co-based nanoalloys. With this strategy, the core-shell structured Ag42 Co13 nanoalloy is predicted to have the highest catalytic activity for ORR among these Co-based nanoalloys. To give a deeper insight into the properties of Ag-Co nanoalloys, the structure, thermal stability, and reaction mechanism of Ag-Co nanoalloys with different compositions are also studied by using molecular simulations and DFT calculations. It is found that core-shell Ag42 Co13 exhibits the highest structural and thermal stability among these Ag-Co nanoalloys. In addition, the core-shell Ag42 Co13 shows the lowest ORR reaction energy barriers among these Ag-Co nanoalloys. It is expected that this kind of strategy could provide a viable way to design highly efficient heterogeneous catalysts in extensive applications.

18.
Chem Rec ; 20(7): 710-729, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31944590

RESUMO

The nano-oxide materials with special structures prepared by template methods have a good dispersion, regular structures and high specific surface areas. Therefore, in some areas, improved properties are observed than conventional bulk oxide materials. For example, in the treatment of dye wastewater, the treatment efficiency of adsorbents and catalytic materials prepared by template method was about 30 % or even higher than that of conventional samples. This review mainly focuses on the progress of inorganic, organic and biological templates in the preparation of micro- and nano- oxide materials with special morphologies, and the roles of the prepared materials as adsorbents and photocatalysts in dye wastewater treatment. The characteristics and advantages of inorganic, organic and biological template are also summarized. In addition, the applications of template method prepared oxides in the field of sensors, drug carrier, energy materials and other fields are briefly discussed with detailed examples.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Óxidos/química , Águas Residuárias/química , Purificação da Água , Tamanho da Partícula , Propriedades de Superfície
19.
Angew Chem Int Ed Engl ; 58(30): 10132-10137, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31087592

RESUMO

A series of novel BN tetraphene derivatives have been prepared successfully for the first time via a post-functionalization strategy. The optical and electronic properties of these derivatives could be tuned systematically by the incorporation of different substituents on the main skeleton. The functionalized BN-containing luminogens have been explored for the detection of latent fingerprints (LFPs) on different substrates, including glass, aluminum foil, plastic, and ironware. This strategy provides great versatility in LFP imaging and good potential in elucidating the chemical information within LFPs, making the strategy valuable in forensic investigations.


Assuntos
Compostos de Boro/química , Dermatoglifia , Humanos , Luminescência , Medições Luminescentes , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
20.
Anal Chem ; 90(5): 3608-3614, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405067

RESUMO

Rapid and selective sensing of sulfur dioxide (SO2) gas has attracted more and more attention because SO2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH2) and further investigate its sensing property for SO2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH2 probe can selectively and sensitively sense SO2 derivatives (i.e., SO32-) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA