Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Sci Monit ; 24: 6525-6536, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30221634

RESUMO

BACKGROUND Type 2 diabetes mellitus (T2DM) and estrogen deficiency both predispose fracture patients to increased risk of delayed union or nonunion. The present study investigated the effects of strontium ranelate (SR) on fracture healing in ovariectomized (OVX) diabetic rats. MATERIAL AND METHODS A mid-shaft fracture was established in female normal control (CF), diabetic (DF), and OVX diabetic (DOF) rats. Treated DOF rats received either insulin alone (DOFI) or combined with SR (DOFIS). All rats were euthanized at 2 or 3 weeks after fracture. Fracture healing was evaluated using radiological, histological, immunohistochemical, and micro-computed tomography analyses. RESULTS At 3 weeks after fracture, radiological and histological evaluations demonstrated delayed fracture healing in the DF group compared with the CF group, which was exacerbated by OVX, as indicated by the significantly lower X-ray score, BMD, BV/TV, and Md.Ar/Ps.Cl.Ar, and the markedly decreased OCN and Col I expression in the DOF group. All these changes were prevented by insulin alone or combined with SR treatment. In comparison with the DOFI group, DOFIS rats displayed markedly higher OCN expression at 2 weeks after fracture and Col I expression at 2 and 3 weeks after fracture. CONCLUSIONS These results demonstrated delayed fracture healing with preexisting estrogen deficiency and T2DM. While insulin alone and combined with SR were both effective in promoting bone fracture healing in this model, their combined treatment showed significant improvement in promoting osteogenic marker expression, but not of the radiological appearance, compared with insulin alone.


Assuntos
Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Tiofenos/uso terapêutico , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Humanos , Insulina/uso terapêutico , Osteoporose/fisiopatologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Tiofenos/farmacologia
2.
Exp Anim ; 72(3): 413-424, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019682

RESUMO

The imbalance of bone resorption and bone formation causes osteoporosis (OP), a common skeletal disorder. Decreased osteogenic activity was found in the bone marrow cultures from N-acetylglucosaminyl transferase V (MGAT5)-deficient mice. We hypothesized that MGAT5 was associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and involved in the pathological mechanisms of osteoporosis. To test this hypothesis, the mRNA and protein expression levels of MGAT5 were determined in bone tissues of ovariectomized (OVX) mice, a well-established OP model, and the role of MGAT5 in osteogenic activity was investigated in murine BMSCs. As expected, being accompanied by the loss of bone mass density and osteogenic markers (runt-related transcription factor 2, osteocalcin and osterix), a reduced expression of MGAT5 in vertebrae and femur tissues were found in OP mice. In vitro, knockdown of Mgat5 inhibited the osteogenic differentiation potential of BMSCs, as evidenced by the decreased expressions of osteogenic markers and less alkaline phosphatase and alizarin red S staining. Mechanically, knockdown of Mgat5 suppressed the nuclear translocation of ß-catenin, thereby downregulating the expressions of downstream genes c-myc and axis inhibition protein 2, which were also associated with osteogenic differentiation. In addition, Mgat5 knockdown inhibited bone morphogenetic protein (BMP)/transforming growth factor (TGF)-ß signaling pathway. In conclusion, MGAT5 may modulate the osteogenic differentiation of BMSCs via the ß-catenin, BMP type 2 (BMP2) and TGF-ß signals and involved in the process of OP.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Animais , Camundongos , beta Catenina/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA