RESUMO
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
RESUMO
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a large family of plant-specific transcription factors that play important roles in plant growth, development, and stress responses. However, there is little information available on SPL genes in Chenopodiaceae. Here, 23 SPL genes were identified and characterized in the highly nutritious crop Chenopodium quinoa. Chromosome localization analysis indicated that the 23 CqSPL genes were unevenly distributed on 12 of 18 chromosomes. Two zinc finger-like structures and a nuclear location signal were present in the SBP domains of all CqSPLs, with the exception of CqSPL21/22. Phylogenetic analysis revealed that these genes were classified into eight groups (group I-VIII). The exon-intron structure and motif composition of the genes in each group were similar. Of the 23 CqSPLs, 13 were potential targets of miR156/7. In addition, 5 putative miR156-encoding loci and 13 putative miR157-encoding loci were predicted in the quinoa genome, and they were unevenly distributed on chromosome 1-4. The expression of several Cqu-MIR156/7 loci was confirmed by reverse transcription polymerase chain reaction in seedlings. Many putative cis-elements associated with light, stress, and phytohormone responses were identified in the promoter regions of CqSPLs, suggesting that CqSPL genes are likely involved in the regulation of key developmental processes and stress responses. Expression analysis revealed highly diverse expression patterns of CqSPLs among tissues. Many CqSPLs were highly expressed in leaves, flowers, and seeds, and their expression levels were low in the roots, suggesting that CqSPLs play distinct roles in the development and growth of quinoa. The expression of 13 of 23 CqSPL genes responded to salt treatment (11 up-regulated and 2 down-regulated). A total of 22 of 23 CqSPL genes responded to drought stress (21 up-regulated and 1 down-regulated). Moreover, the expression of 14 CqSPL genes was significantly altered following cadmium treatment (3 up-regulated and 11 down-regulated). CqSPL genes are thus involved in quinoa responses to salt/drought and cadmium stresses. These findings provide new insights that will aid future studies of the biological functions of CqSPLs in C. quinoa.
Assuntos
Chenopodium quinoa , Cádmio/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismoRESUMO
A new class of chitosan derivatives with an isopropylthiourea at the 2-position and various carbamates at the 3,6-positions of the glucosamine skeleton was synthesized by the selective thiocarbamoylation of the 2-amino group. The chiral stationary phases (CSPs) were then prepared by coating the obtained chitosan 2-isopropylthiourea-3,6-dicarbamate derivatives onto silica gel. The enantioseparation property of the chitosan-based CSPs was assessed with twelve racemates by high-performance liquid chromatography (HPLC). The CSPs displayed a characteristic enantioseparation power, which seemed to be significantly affected by the 3,6-substituents of the glucosamine unit. The chitosan derivatives with the 3,6-diphenylcarbamate, except for 2-methylphenylcarbamate, possessed higher enantioseparation abilities than those with the 3,6-dicyclohexylcarbamate. Compared to other chitosan derivatives with 2-various substituents and commercialized Chiralcel OD, the chitosan 2-isopropylthiourea derivatives revealed a relatively higher enantioselectivity for some racemic compounds.