Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 22(10): e51871, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396669

RESUMO

Phospholipase D (PLD) hydrolyzes membrane lipids to produce phosphatidic acid (PA), a lipid mediator involved in various cellular and physiological processes. Here, we show that PLDα6 and PA regulate the distribution of GIBBERELLIN (GA)-INSENSITIVE DWARF1 (GID1), a soluble gibberellin receptor in rice. PLDα6-knockout (KO) plants display less sensitivity to GA than WT, and PA restores the mutant to a normal GA response. PA binds to GID1, as documented by liposome binding, fat immunoblotting, and surface plasmon resonance. Arginines 79 and 82 of GID1 are two key amino acid residues required for PA binding and also for GID1's nuclear localization. The loss of PLDα6 impedes GA-induced nuclear localization of GID1. In addition, PLDα6-KO plants attenuated GA-induced degradation of the DELLA protein SLENDER RICE1 (SLR1). These data suggest that PLDα6 and PA positively mediate GA signaling in rice via PA binding to GID1 and promotion of its nuclear translocation.


Assuntos
Giberelinas , Oryza , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Ácidos Fosfatídicos , Fosfolipases , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
Plant J ; 94(1): 32-47, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383786

RESUMO

OsGBPs are a small family of four genes in rice (Oryza sativa L.) that function as transcription factors recognizing the GAGA motif; however, their functions in plant growth and development remain unclear. Here we report the functions of OsGBPs in plant growth and grain development. Knock-down and knock-out of OsGBP1 promoted seedling growth and enhanced grain length, whereas overexpression of OsGBP1 exhibited the opposite effect on seedling growth and grain length, indicating that OsGBP1 repressed grain length and seedling growth. In addition, overexpression of OsGBP1 led to delayed flowering time and suppressed plant height. OsGBP1 could regulate OsLFL1 expression through binding to the (GA)12 element of its promoter. In contrast, OsGBP3 induced grain length and plant height. Grain length and plant height were decreased in OsGBP3RNAi lines and were increased in OsGBP3 overexpression lines. We also found a synergistic effect of these two genes on grain width and plant growth. RNAi of both OsGBP1 and OsGBP3 resulted in severe dwarfism, compared with RNAi of a single gene. These results suggest the presence of functional divergence of OsGBPs in the regulation of grain size and plant growth; these results enrich our understanding of the roles of GAGA-binding transcription factors in the regulatory pathways of plant development.


Assuntos
Oryza/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Grão Comestível/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcriptoma
3.
Plant Cell Environ ; 42(2): 536-548, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30175516

RESUMO

Phosphatidylinositol-specific phospholipase C (PI-PLC) is involved in stress signalling but its signalling function remains largely unknown in crop plants. Here, we report that the PI-PLC4 from rice (Oryza sativa cv), OsPLC4, plays a positive role in osmotic stress response. Two independent knockout mutants, plc4-1 and plc4-2, exhibited decreased seedling growth and survival rate whereas overexpression of OsPLC4 improved survival rate under high salinity and water deficiency, compared with wild type (WT). OsPLC4 hydrolyses PI, phosphatidylinositol 4-phosphate (PI4P), and phosphatidylinositol-4,5-bisphosphate (PIP2 ) to generate diacylglycerol (DAG) in vitro. Knockout of OsPLC4 attenuated salt-induced increase of phosphatidic acid (PA) whereas overexpression of OsPLC4 decreased the level of PI4P and PIP2 under salt treatment. Applications of DAG or PA restored the growth defect of plc4-1 to WT but DAG kinase inhibitor 1 blocked the complementary effect of DAG in plc4-1 under salt stress. In addition, the loss of OsPLC4 compromised the increase of inositol triphosphate and free cytoplasmic Ca2+ ([Ca2+ ]cyt ) and inhibited the induction of genes involved in Ca2+ sensor and osmotic stress response to salt stress. The results indicate that OsPLC4 modulates the activity of two signalling pathways, PA and Ca2+ , to affect rice seedling response to osmotic stress.


Assuntos
Oryza/fisiologia , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Plantas/metabolismo , Desidratação , Técnicas de Inativação de Genes , Hidrólise , Oryza/enzimologia , Oryza/metabolismo , Pressão Osmótica , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/fisiologia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino/fisiologia
4.
Plant J ; 86(4): 308-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26991499

RESUMO

Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non-specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1-overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild-type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1-OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1-OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild-type plants; whereas NPC1-RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/fisiologia , Silício/metabolismo , Fosfolipases Tipo C/fisiologia , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Interferência de RNA , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA