Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 263-273, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109718

RESUMO

Dual-atom catalysts (DACs) with paired active sites can provide unique intrinsic properties for heterogeneous catalysis, but the synergy of the active centers remains to be elucidated. Here, we develop a high-performance DAC with Zn1Co1 species anchored on nitrogen-doped carbon (Zn1Co1/NC) as the dominant active site for the propane dehydrogenation (PDH) reaction. It exhibits several times higher turnover frequency (TOF) of C3H8 conversion and enhanced C3H6 selectivity compared to Zn1/NC or Co1/NC with only a single-atom site. Various experimental and theoretical studies suggest that the enhanced PDH performance stems from the promoted activation of the C-H bond of C3H8 triggered by the electronic interaction between Zn1 and Co1 colligated by N species. Moreover, the dynamic sinking of the Zn1 site and rising of the Co1 site, together with the steric effect of the dissociated H species at the bridged N during the PDH reaction, provides a feasible channel for C3H6 desorption through the more exposed Co1 site, thereby boosting the selectivity. This work provides a promising strategy for designing robust hetero DACs to simultaneously increase activity and selectivity in the PDH reaction.

2.
Plant Biotechnol J ; 22(4): 929-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009862

RESUMO

The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.


Assuntos
Flores , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiologia , Zea mays/genética , Zea mays/metabolismo , Fotoperíodo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas/genética
3.
Theor Appl Genet ; 137(6): 132, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750241

RESUMO

KEY MESSAGE: The Dof22 gene encoding a deoxyribonucleic acid binding with one finger in maize, which is associated with its drought tolerance. The identification of drought stress regulatory genes is essential for the genetic improvement of maize yield. Deoxyribonucleic acid binding with one finger (Dof), a plant-specific transcription factor family, is involved in signal transduction, morphogenesis, and environmental stress responses. In present study, by weighted correlation network analysis (WGCNA) and gene co-expression network analysis, 15 putative Dof genes were identified from maize that respond to drought and rewatering. A real-time fluorescence quantitative PCR showed that these 15 genes were strongly induced by drought and ABA treatment, and among them ZmDof22 was highly induced by drought and ABA treatment. Its expression level increased by nearly 200 times after drought stress and more than 50 times after ABA treatment. After the normal conditions were restored, the expression levels were nearly 100 times and 40 times of those before treatment, respectively. The Gal4-LexA/UAS system and transcriptional activation analysis indicate that ZmDof22 is a transcriptional activator regulating drought tolerance and recovery ability in maize. Further, overexpressed transgenic and mutant plants of ZmDof22 by CRISPR/Cas9, indicates that the ZmDof22, improves maize drought tolerance by promoting stomatal closure, reduces water loss, and enhances antioxidant enzyme activity by participating in the ABA pathways. Taken together, our findings laid a foundation for further functional studies of the ZmDof gene family and provided insights into the role of the ZmDof22 regulatory network in controlling drought tolerance and recovery ability of maize.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estômatos de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/enzimologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Resistência à Seca
4.
Mol Genet Genomics ; 296(6): 1203-1219, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34601650

RESUMO

Drought severely affects the growth and development of maize, but there is a certain degree of compensation effect after rewatering. This study intends to elaborate the response mechanism of maize at the physiological and molecular level as well as excavating potential genes with strong drought resistance and recovery ability. Physiological indexes analysis demonstrated that stomata conductance, transpiration rate, photosynthesis rate, antioxidant enzymes, and proline levels in maize were significantly altered in response to drought for 60 and 96 h and rewatering for 3 days. At 60 h, 96 h, and R3d, we detected 3095, 1941, and 5966 differentially expressed genes (DEGs) and 221, 226, and 215 differentially expressed miRNAs. Weighted correlation network analysis (WGCNA) showed that DEGs responded to maize drought and rewatering through participating in photosynthesis, proline metabolism, ABA signaling, and oxidative stress. Joint analysis of DEGs, miRNA, and target genes showed that zma-miR529, miR5072, zma-miR167e, zma-miR167f, zma-miR167j, miR397, and miR6214 were involved to regulate SBPs, MYBs, ARFs, laccases, and antioxidant enzymes, respectively. Hundreds of differentially expressed DNA methylation-related 24-nt siRNA clusters overlap with DEGs, indicating that DNA methylation is involved in responses under drought stress. These results provide new insights into the molecular mechanisms of drought tolerance, and may identify new targets for breeding drought-tolerant maize lines.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Zea mays/metabolismo , Antioxidantes/metabolismo , Metilação de DNA/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Fotossíntese , Melhoramento Vegetal , Folhas de Planta/fisiologia , Transcriptoma/genética , Zea mays/genética
5.
J Exp Bot ; 72(5): 1782-1794, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33270106

RESUMO

Leaf angle is an important agronomic trait in cereals and shares a close relationship with crop architecture and grain yield. Although it has been previously reported that ZmCLA4 can influence leaf angle, the underlying mechanism remains unclear. In this study, we used the Gal4-LexA/UAS system and transactivation analysis to demonstrate in maize (Zea mays) that ZmCLA4 is a transcriptional repressor that regulates leaf angle. DNA affinity purification sequencing (DAP-Seq) analysis revealed that ZmCLA4 mainly binds to promoters containing the EAR motif (CACCGGAC) as well as to two other motifs (CCGARGS and CDTCNTC) to inhibit the expression of its target genes. Further analysis of ZmCLA4 target genes indicated that ZmCLA4 functions as a hub of multiple plant hormone signaling pathways: ZmCLA4 was found to directly bind to the promoters of multiple genes including ZmARF22 and ZmIAA26 in the auxin transport pathway, ZmBZR3 in the brassinosteroid signaling pathway, two ZmWRKY genes involved in abscisic acid metabolism, ZmCYP genes (ZmCYP75B1, ZmCYP93D1) related to jasmonic acid metabolism, and ZmABI3 involved in the ethylene response pathway. Overall, our work provides deep insights into the ZmCLA4 regulatory network in controlling leaf angle in maize.


Assuntos
Folhas de Planta , Zea mays , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Hormônios , Transdução de Sinais , Zea mays/genética
6.
Plant Cell Environ ; 43(9): 2272-2286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562291

RESUMO

The growth and development of maize are negatively affected by various abiotic stresses including drought, high salinity, extreme temperature, and strong wind. Therefore, it is important to understand the molecular mechanisms underlying abiotic stress resistance in maize. In the present work, we identified that a novel NAC transcriptional factor, ZmNST3, enhances maize lodging resistance and drought stress tolerance. ChIP-Seq and expression of target genes analysis showed that ZmNST3 could directly regulate the expression of genes related to cell wall biosynthesis which could subsequently enhance lodging resistance. Furthermore, we also demonstrated that ZmNST3 affected the expression of genes related to the synthesis of antioxidant enzyme secondary metabolites that could enhance drought resistance. More importantly, we are the first to report that ZmNST3 directly binds to the promoters of CESA5 and Dynamin-Related Proteins2A (DRP2A) and activates the expression of genes related to secondary cell wall cellulose biosynthesis. Additionally, we revealed that ZmNST3 directly binds to the promoters of GST/GlnRS and activates genes which could enhance the production of antioxidant enzymes in vivo. Overall, our work contributes to a comprehensive understanding of the regulatory network of ZmNST3 in regulating maize lodging and drought stress resistance.


Assuntos
Secas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Celulose/genética , Celulose/metabolismo , Desidratação , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Lignina/genética , Lignina/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948071

RESUMO

OSCAs are hyperosmolality-gated calcium-permeable channel proteins. In this study, two co-expression modules, which are strongly associated with maize proline content, were screened by weighted correlation network analysis, including three ZmOSCA family members. Phylogenetic and protein domain analyses revealed that 12 ZmOSCA members were classified into four classes, which all contained DUF221 domain. The promoter region contained multiple core elements responsive to abiotic stresses and hormones. Colinear analysis revealed that ZmOSCAs had diversified prior to maize divergence. Most ZmOSCAs responded positively to ABA, PEG, and NaCl treatments. ZmOSCA2.3 and ZmOSCA2.4 were up-regulated by more than 200-fold under the three stresses, and showed significant positive correlations with proline content. Yeast two-hybrid and bimolecular fluorescence complementation indicated that ZmOSCA2.3 and ZmOSCA2.4 proteins interacted with ZmEREB198. Over-expression of ZmOSCA2.4 in Arabidopsis remarkably improved drought resistance. Moreover, over-expression of ZmOSCA2.4 enhanced the expression of drought tolerance-associated genes and reduced the expression of senescence-associated genes. We also found that perhaps ZmOSCA2.4 was regulated by miR5054.The results provide a high-quality molecular resource for selecting resistant breeding, and lay a foundation for elucidating regulatory mechanism of ZmOSCA under abiotic stresses.


Assuntos
Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Canais de Cálcio/genética , Senescência Celular/efeitos dos fármacos , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , MicroRNAs/metabolismo , Pressão Osmótica , Filogenia , Plantas Geneticamente Modificadas/genética , Prolina/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
8.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443483

RESUMO

The basic leucine zipper (bZIP) family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few bZIPs have been functionally characterized. In this paper, 54 maize bZIP genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize bZIP family. Spatio-temporal expression analyses showed that bZIP genes are widely expressed during maize development. We identified 10 core ZmbZIPs involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that ZmbZIP17, -33, -42, and -45 are nuclear proteins. These results provide the basis for future functional genomic studies on bZIP TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Zíper de Leucina/genética , Estresse Fisiológico/genética , Zea mays/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Biologia Computacional/métodos , Sequência Conservada , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Genômica/métodos , Família Multigênica , Regiões Promotoras Genéticas , Transcriptoma , Zea mays/classificação
9.
BMC Plant Biol ; 15: 21, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623724

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the processes of plant growth and development, but little is known of their functions during dehydration stress in wheat. Moreover, the mechanisms by which miRNAs confer different levels of dehydration stress tolerance in different wheat genotypes are unclear. RESULTS: We examined miRNA expressions in two different wheat genotypes, Hanxuan10, which is drought-tolerant, and Zhengyin1, which is drought-susceptible. Using a deep-sequencing method, we identified 367 differentially expressed miRNAs (including 46 conserved miRNAs and 321 novel miRNAs) and compared their expression levels in the two genotypes. Among them, 233 miRNAs were upregulated and 10 were downregulated in both wheat genotypes after dehydration stress. Interestingly, 13 miRNAs exhibited opposite patterns of expression in the two wheat genotypes, downregulation in the drought-tolerant cultivar and upregulation in the drought-susceptible cultivar. We also identified 111 miRNAs that were expressed predominantly in only one or the other genotype after dehydration stress. We verified the expression patterns of a number of representative miRNAs using qPCR analysis and northern blot, which produced results consistent with those of the deep-sequencing method. Moreover, monitoring the expression levels of 10 target genes by qPCR analysis revealed negative correlations with the levels of their corresponding miRNAs. CONCLUSIONS: These results indicate that differentially expressed patterns of miRNAs between these two genotypes may play important roles in dehydration stress tolerance in wheat and may be a key factor in determining the levels of stress tolerance in different wheat genotypes.


Assuntos
Dessecação , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Triticum/fisiologia , China , Secas , Genótipo , MicroRNAs/metabolismo , Estrutura Secundária de Proteína , Estresse Fisiológico , Triticum/genética
10.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337873

RESUMO

The protein phosphatase PP2C plays an important role in plant responses to stress. Therefore, the identification of maize PP2C genes that respond to drought stress is particularly important for the improvement and creation of new drought-resistant assortments of maize. In this study, we identified 102 ZmPP2C genes in maize at the genome-wide level. We analyzed the physicochemical properties of 102 ZmPP2Cs and constructed a phylogenetic tree with Arabidopsis. By analyzing the gene structure, conserved protein motifs, and synteny, the ZmPP2Cs were found to be strongly conserved during evolution. Sixteen core genes involved in drought stress and rewatering were screened using gene co-expression network mapping and expression profiling. The qRT-PCR results showed 16 genes were induced by abscisic acid (ABA), drought, and NaCl treatments. Notably, ZmPP2C15 exhibited a substantial expression difference. Through genetic transformation, we overexpressed ZmPP2C15 and generated the CRISPR/Cas9 knockout maize mutant zmpp2c15. Overexpressing ZmPP2C15 in Arabidopsis under drought stress enhanced growth and survival compared with WT plants. The leaves exhibited heightened superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) activities, elevated proline (Pro) content, and reduced malondialdehyde (MDA) content. Conversely, zmpp2c15 mutant plants displayed severe leaf dryness, curling, and wilting under drought stress. Their leaf activities of SOD, POD, APX, and CAT were lower than those in B104, while MDA was higher. This suggests that ZmPP2C15 positively regulates drought tolerance in maize by affecting the antioxidant enzyme activity and osmoregulatory substance content. Subcellular localization revealed that ZmPP2C15 was localized in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments demonstrated ZmPP2C15's interaction with ZmWIN1, ZmADT2, ZmsodC, Zmcab, and ZmLHC2. These findings establish a foundation for understanding maize PP2C gene functions, offering genetic resources and insights for molecular design breeding for drought tolerance.

11.
Front Plant Sci ; 14: 1159955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265635

RESUMO

Nuclear factor Y (NF-Y) genes play important roles in many biological processes, such as leaf growth, nitrogen nutrition, and drought resistance. However, the biological functions of these transcription factor family members have not been systematically analyzed in maize. In the present study, a total of 52 ZmNF-Y genes were identified and classified into three groups in the maize genome. An analysis of the evolutionary relationship, gene structure, and conserved motifs of these genes supports the evolutionary conservation of NF-Y family genes in maize. The tissue expression profiles based on RNA-seq data showed that all genes apart from ZmNF-Y16, ZmNF-YC15, and ZmNF-YC17 were expressed in different maize tissues. A weighted correlation network analysis was conducted and a gene co expression network method was used to analyze the transcriptome sequencing results; six core genes responding to drought and rewatering were identified. A real time fluorescence quantitative analysis showed that these six genes responded to high temperature, drought, high salt, and abscisic acid (ABA) treatments, and subsequent restoration to normal levels. ZmNF-YC12 was highly induced by drought and rewatering treatments. The ZmNF-YC12 protein was localized in the nucleus, and the Gal4-LexA/UAS system and a transactivation analysis demonstrated that ZmNF-YC12 in maize (Zea mays L.) is a transcriptional activator that regulates drought resistance and recovery ability. Silencing ZmNF-YC12 reduced net photosynthesis, chlorophyll content, antioxidant (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) system activation, and soluble protein and proline contents; it increased the malondialdehyde content, the relative water content, and the water loss rate, which weakened drought resistance and the recoverability of maize. These results provide insights into understanding the evolution of ZmNF-Y family genes in maize and their potential roles in genetic improvement. Our work provides a foundation for subsequent functional studies of the NF-Y gene family and provides deep insights into the role of the ZmNF-YC12 regulatory network in controlling drought resistance and the recoverability of maize.

12.
Nanoscale ; 15(3): 1422-1430, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594603

RESUMO

Chemoselective hydrogenation of quinoline and its derivatives under mild reaction conditions still remains a challenging topic, which requires a suitable interaction between reactants and a catalyst to achieve high performance and stability. Herein, FePO4-supported Rh single atoms, subnano clusters and nanoparticle catalysts were synthesized and evaluated in the chemoselective hydrogenation of quinoline. The results show that the Rh subnano cluster catalyst with a size of ∼1 nm gives a specific reaction rate of 353 molquinoline molRh-1 h-1 and a selectivity of >99% for 1,2,3,4-tetrahydroquinoline under mild conditions of 50 °C and 5 bar H2, presenting better performance compared with the Rh single atoms and nanoparticle counterparts. Moreover, the Rh subnano cluster catalyst exhibits good stability and substrate universality for the hydrogenation of various functionalized quinolines. A series of characterization studies demonstrate that the acidic properties of the FePO4 support favors the adsorption of quinoline while the Rh subnano clusters promote the dissociation of H2 molecules, and then contribute to the enhanced hydrogenation performance. This work provides an important implication to design efficient Rh-based catalysts for chemoselective hydrogenation under mild conditions.

13.
J Plant Physiol ; 280: 153883, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470036

RESUMO

Maize is an important feed and industrial cereal crop and is crucial for global food security. The development of drought-tolerant genotypes is a major aim of breeding programs to fight water scarcity and maintain sustainable maize production. Late embryogenesis abundant (LEA) proteins are a family of proteins related to osmotic regulation that widely exist in organisms. Here, we implemented a previously generated maize transcriptomic dataset to identify a drought-responsive gene designated ZmNHL1. Bioinformatics analysis of ZmNHL1 showed that the protein encoded by ZmNHL1 belongs to the LEA-2 protein family. Tissue specific expression analysis showed that ZmNHL1 is relatively abundant in stems and leaves, highly expressed in tassels and only slightly expressed in roots, pollens and ears. Moreover, the activity of SOD and POD of plants from three 35S::ZmNHL1 transgenic lines under either the induced drought stress conditions (by 20% PEG6000) or the natural water deficit treatment (by water withholding) were higher than that of the WT plants, while the electrolyte leakage of the 35S::ZmNHL1 transgenic plants was lower than that of the WT plants under both drought treatments. Our data further revealed that ZmNHL1 promotes maize tolerance to drought stress in 35S::ZmNHL1 transgenic plants by improving ROS scavenging and maintaining the cell membrane permeability. Overall, our data revealed that ZmNHL1 promotes maize tolerance to drought stress and contributes to provide elite germplasm resources for maize drought tolerance breeding programs.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Água/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Desenvolvimento Embrionário , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
14.
Stress Biol ; 3(1): 47, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971599

RESUMO

MYB-related genes, a subclass of MYB transcription factor family, have been documented to play important roles in biological processes such as secondary metabolism and stress responses that affect plant growth and development. However, the regulatory roles of MYB-related genes in drought stress response remain unclear in maize. In this study, we discovered that a 1R-MYB gene, ZmRL6, encodes a 96-amino acid protein and is highly drought-inducible. We also found that it is conserved in both barley (Hordeum vulgare L.) and Aegilops tauschii. Furthermore, we observed that overexpression of ZmRL6 can enhance drought tolerance while knock-out of ZmRL6 by CRISPR-Cas9 results in drought hypersensitivity. DAP-seq analyses additionally revealed the ZmRL6 target genes mainly contain ACCGTT, TTACCAAAC and AGCCCGAG motifs in their promoters. By combining RNA-seq and DAP-seq results together, we subsequently identified eight novel target genes of ZmRL6 that are involved in maize's hormone signal transduction, sugar metabolism, lignin synthesis, and redox signaling/oxidative stress. Collectively, our data provided insights into the roles of ZmRL6 in maize's drought response.

15.
Plant Sci ; 314: 111127, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895535

RESUMO

Serine/threonine protein phosphatases play essential roles in plants. PP2C has diverse functions related to development and stress response, while little is known about the functions of PP2C genes with respect to a variety of stresses in maize. In the present study, three ZmPP2C genes, ZmPP2C55, ZmPP2C28, and ZmPP2C71, were identified. Subcellular localization demonstrated that ZmPP2C28 and ZmPP2C71 were nuclear proteins, and ZmPP2C55 was located in both the nucleus and cytoplasm. qRT-PCR analysis showed that ZmPP2C55, ZmPP2C28, and ZmPP2C71 were expressed in roots, leaves and stems, and the three genes were responsive to drought, salt, high-temperature stress and exogenous ABA treatment. To explore the function of the ZmPP2C gene, ZmPP2C55-overexpressing transgenic lines were generated. The transgenic plants exhibited higher RWC, proline content, POD and SOD activities, GSH content and GSH/GSSG ratio and lower MDA content, electrolyte leakage and GSSG content compared with WT plants under natural stress treatment when seedlings were at the three-leaf. Our results illustrated that the overexpression of ZmPP2C55 positively enhanced tolerance to drought stress.


Assuntos
Adaptação Fisiológica/genética , Desidratação/fisiopatologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
16.
J Agric Food Chem ; 70(44): 14235-14246, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36283033

RESUMO

The constituents of germinated brown rice (GBR), brown rice (BRR), and white rice (WHR) and their impact on metabolism, inflammation, and gut microbiota in high fat (HF) diet-fed mice were examined. The contents of total fiber and γ-aminobutyric acid in BRR and GBR were higher than that in WHR (p < 0.05). Male C57 BL/6J mice received HF diet+26 g% of WHR, BRR, or GBR for 12 weeks. BRR and GBR comparably reduced HF diet-induced increases in fasting plasma glucose, lipids, insulin resistance, and inflammatory markers compared to WHR (p < 0.01). The abundance of fecal Bacteroidetes in mice fed HF+GBR or HF+BRR was higher than in HF+WHR-fed mice (p < 0.05). The abundance of fecal Lactobacillus gasseri in GBR-fed mice was greater than that in WHR- or BRR-fed mice (p < 0.05). The results indicated that GBR or BRR attenuated hyperglycemia, insulin resistance, and inflammation in mice. HF+GBR, but not HF+BRR, increased a probiotic bacteria in the gut.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Oryza , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Insulina , Inflamação , Camundongos Endogâmicos C57BL
17.
Front Plant Sci ; 12: 629903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868332

RESUMO

Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 µmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5µmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3-4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.

18.
Front Med (Lausanne) ; 8: 645356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422846

RESUMO

Background: Many studies have demonstrated the efficacy of single-allergen sublingual immunotherapy (SLIT) in polysensitized patients with allergic rhinitis (AR), but less is reported in polysensitized patients with allergic asthma (AS). Method: Data of 133 adult patients with house dust mite (HDM)-induced AS who had been treated for 3 years were collected. These patients were divided into the control group (treated with low to moderate dose of inhaled glucocorticoids and long-acting ß2 agonists, n = 37) and the SLIT group (further treated with Dermatophagoides farinae drops, n = 96). The SLIT group contained three subgroups: the single-allergen group (only sensitized to HDM, n = 35), the 1- to 2-allergen group (HDM combined with one to two other allergens, n = 32), and the 3-or-more-allergen group (HDM combined with three or more other allergens, n = 29). The total asthma symptom score (TASS), total asthma medicine score (TAMS), and asthma control test (ACT) were assessed before treatment and at yearly visits. Forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) was assessed before treatment and at the end of SLIT. Results: TASS and ACT scores in the control group were significantly higher than that in the single-allergen group and the 1- to 2-allergen group after 1, 2, and 3 years of SLIT and significantly higher than that in the 3-or-more-allergen group after 3-year SLIT (all p < 0.05). TAMS of the control group was significantly higher than that of the other three groups after 0.5, 1, 2, and 3 years of SLIT (all p < 0.05). FEV1/FVC in the control group was significantly higher than baseline after 3 years of immunotherapy (p < 0.05). Conclusion: Patients sensitized to HDM with/without other allergens showed similar efficacy after 3 years of SLIT. However, the initial response of patients with three or more allergens was slower during immunotherapy process.

19.
G3 (Bethesda) ; 5(2): 281-9, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25538101

RESUMO

The internode length above the uppermost ear (ILAU) is an important influencing factor for canopy architecture in maize. Analyzing the genetic characteristics of internode length is critical for improving plant population structure and increasing photosynthetic efficiency. However, the genetic control of ILAU has not been determined. In this study, quantitative trait loci (QTL) for internode length at five positions above the uppermost ear were identified using four sets of recombinant inbred line (RIL) populations in three environments. Genetic maps and initial QTL were integrated using meta-analyses across the four populations. Seventy QTL were identified: 16 in population 1; 14 in population 2; 25 in population 3; and 15 in population 4. Individual effects ranged from 5.36% to 26.85% of phenotypic variation, with 27 QTL >10%. In addition, the following common QTL were identified across two populations: one common QTL for the internode length of all five positions; one common QTL for the internode length of three positions; and one common QTL for the internode length of one position. In addition, four common QTL for the internode length of four positions were identified in one population. The results indicated that the ILAU at different positions above the uppermost ear could be affected by one or several of the same QTL. The traits may also be regulated by many different QTL. Of the 70 initial QTL, 46 were integrated in 14 meta-QTL (mQTLs) by meta-analysis, and 17 of the 27 initial QTL with R(2) >10% were integrated in 7 mQTLs. Four of the key mQTLs (mQTL2-2, mQTL3-2, mQTL5-1, mQTL5-2, and mQTL9) in which the initial QTL displayed R(2) >10% included four to 11 initial QTL for an internode length of four to five positions from one or two populations. These results may provide useful information for marker-assisted selection to improve canopy architecture.


Assuntos
Zea mays/crescimento & desenvolvimento , Zea mays/genética , Genes de Plantas , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA