Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(16): e2311151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182407

RESUMO

Solar-driven interfacial evaporation (SDIE) has played a pivotal role in optimizing water-energy utilization, reducing conventional power costs, and mitigating environmental impacts. The increasing emphasis on the synergistic cogeneration of water and green electricity through SDIE is particularly noteworthy. However, there is a gap of existing reviews that have focused on the mechanistic understanding of green power from water-electricity cogeneration (WEC) systems, the structure-activity relationship between efficiency of green energy utilization in WEC and material design in SDIE. Particularly, it lacks a comprehensive discussion to address the challenges faced in these areas along with potential solutions. Therefore, this review aims to comprehensively assess the progress and future perspective of green electricity from WEC systems by investigating the potential expansion of SDIE. First, it provides a comprehensive overview about material rational design, thermal management, and water transportation tunnels in SDIE. Then, it summarizes diverse energy sources utilized in the SDIE process, including steaming generation, photovoltaics, salinity gradient effect, temperature gradient effect, and piezoelectric effect. Subsequently, it explores factors that affect generated green electricity efficiency in WEC. Finally, this review proposes challenges and possible solution in the development of WEC.

2.
Adv Mater ; 36(16): e2312746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198832

RESUMO

The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA