Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1738, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977671

RESUMO

Chromium(III) is extensively used as a supplement for muscle development and the treatment of diabetes mellitus. However, its mode of action, essentiality, and physiological/pharmacological effects have been a subject of scientific debate for over half a century owing to the failure in identifying the molecular targets of Cr(III). Herein, by integrating fluorescence imaging with a proteomic approach, we visualized the Cr(III) proteome being mainly localized in the mitochondria, and subsequently identified and validated eight Cr(III)-binding proteins, which are predominately associated with ATP synthesis. We show that Cr(III) binds to ATP synthase at its beta subunit via the catalytic residues of Thr213/Glu242 and the nucleotide in the active site. Such a binding suppresses ATP synthase activity, leading to the activation of AMPK, improving glucose metabolism, and rescuing mitochondria from hyperglycaemia-induced fragmentation. The mode of action of Cr(III) in cells also holds true in type II diabetic male mice. Through this study, we resolve the long-standing question of how Cr(III) ameliorates hyperglycaemia stress at the molecular level, opening a new horizon for further exploration of the pharmacological effects of Cr(III).


Assuntos
Diabetes Mellitus , Hiperglicemia , Camundongos , Masculino , Animais , Hiperglicemia/tratamento farmacológico , ATPases Mitocondriais Próton-Translocadoras , Cromo , Proteômica , Trifosfato de Adenosina
2.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546983

RESUMO

The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with remarkable differences evident between individuals at the molecular level. Here we present a transcriptomic survey of AD using spatial transcriptomics (ST) and single-nucleus RNA-seq in cortical samples from early-stage AD, late-stage AD, and AD in Down Syndrome (AD in DS) donors. Studying AD in DS provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. Our analysis revealed spatial and cell-type specific changes in disease, with broad similarities in these changes between sAD and AD in DS. We performed additional ST experiments in a disease timecourse of 5xFAD and wildtype mice to facilitate cross-species comparisons. Finally, amyloid plaque and fibril imaging in the same tissue samples used for ST enabled us to directly link changes in gene expression with accumulation and spread of pathology.

3.
Water Environ Res ; 92(10): 1786-1793, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32762138

RESUMO

Microbes are sensitive to environmental changes and can respond in a short time. Genomics, proteomics, transcriptomics, metabolomics, and multigroup association are used to characterize the composition, function, and metabolism of microorganisms, and to evaluate the environment according to the changes in microorganisms, which has important reference and guiding significance of environmental monitoring, management, and repair. In this paper, the application of molecular biological methods to study environmental microorganisms in the fields of wastewater treatment, pollution control, soil improvement, and environmental monitoring in 2019 is reviewed.


Assuntos
Genômica , Proteômica , Monitoramento Ambiental , Poluição Ambiental , Metabolômica
4.
Sci Rep ; 6: 22080, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916830

RESUMO

It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(ß-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.


Assuntos
Aminoácidos , Cobre/química , Ésteres/química , beta-Ciclodextrinas/química , Catálise , Cromatografia Líquida de Alta Pressão , Hidrólise , Cinética , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA