Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Environ Sci Technol ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38237041

RESUMO

Herein, 16 traditional and 13 novel organophosphate esters (OPEs) in skin wipes, personal PM2.5, sputum, and nails (fingernails and toenails) and 7 OPE metabolites in urine synchronously obtained from 64 college students were analyzed. Similar compositional profiles of the OPEs were found in skin wipes and nails and in personal PM2.5 and induced sputum. Significant correlations were observed between the concentrations of high-lipophilicity low-volatility OPEs in skin wipes and nails and between the concentrations of high-volatility low-lipophilicity OPEs in personal PM2.5 and sputum. These results imply that OPEs in fingernails and toenails may mainly come from external sources rather than internal exposure, and human nails and sputum can be used as indicators of human exposure to OPEs. A comparison between the daily exposure doses of the OPEs in personal PM2.5 and sputum shows that more volatile compounds may have higher inhalation bioavailability, which should be considered to improve the accuracy of inhalation exposure assessments. According to comprehensive external and internal exposure assessment, dermal absorption may be a more dominant pathway than inhalation, and skin wipes may be the best representative environmental matrix of human exposure to OPEs.

2.
J Environ Manage ; 354: 120367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387352

RESUMO

Black carbon (BC) significantly affects climate, environmental quality, and human health. This study utilised Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), which can compensate for the shortcomings of ground BC monitoring in spatial-temporal distribution to study the pollution characteristics of BC and potential pollution sources in a typical industrial city (Xinxiang) with serious air pollution in northern China. The results showed that average daily ground observation and MERRA-2 concentration of BC of 7.33 µg m-3 and 9.52 µg m-3. The mean BC concentration derived from MERRA-2 reanalysis data was higher than ground measurement due to resolution limitations and pollution from the northern regions. The reliability of the MERRA-2 data was confirmed through correlation analysis. Consideration of the spatial distribution of BC from MERRA-2 and incorporating the potential source contribution function (PSCF), concentration-weighted trajectory (CWT), and emission inventory, other possible source areas and primary sources of BC in Xinxiang were investigated. The results indicated that implementing transportation and residential emission control measures in Henan Province and its surrounding provinces, such as Hebei Province, will effectively decrease the BC level in Xinxiang City. A passively smoked cigarettes model was used to evaluate the risk of BC exposure. The percentage of lung function decrement (PLFD) was the highest in school-age children, while the impact on lung cancer (LC) health risk was comparatively lower. Notably, the BC health risk in Xinxiang was lower than in most cities across Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Cidades , Poluentes Atmosféricos/análise , Estudos Retrospectivos , Reprodutibilidade dos Testes , Monitoramento Ambiental , China , Poluição do Ar/análise , Fuligem , Carbono/análise , Material Particulado/análise
3.
J Environ Manage ; 350: 119623, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029496

RESUMO

The hydrolysis of extracellular polymeric substances (EPS) represents a critical bottleneck in the anaerobic fermentation of waste activated sludge (WAS), while tryptophan is identified as an underestimated constituent of EPS. Herein, we harnessed a tryptophan-degrading microbial consortium (TDC) to enhance the hydrolysis efficiency of WAS. At TDC dosages of 5%, 10%, and 20%, a notable increase in SCOD was observed by factors of 1.13, 1.39, and 1.88, respectively. The introduction of TDC improved both the yield and quality of short chain fatty acids (SCFAs), the maximum SCFA yield increased from 590.6 to 1820.2, 1957.9 and 2194.9 mg COD/L, whilst the acetate ratio within SCFAs was raised from 34.1% to 61.2-70.9%. Furthermore, as TDC dosage increased, the relative activity of protease exhibited significant increments, reaching 116.3%, 168.0%, and 266.1%, respectively. This enhancement facilitated WAS solubilization and the release of organic substances from bound EPS into soluble EPS. Microbial analysis identified Tetrasphaera and Soehngenia as key participants in WAS solubilization and the breakdown of protein fraction. Metabolic analysis revealed that TDC triggered the secretion of enzymes associated with amino acid metabolism and fatty acid biosynthesis, thereby fostering the decomposition of proteins and production of SCFAs.


Assuntos
Esgotos , Triptofano , Humanos , Fermentação , Esgotos/química , Anaerobiose , Triptofano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio
4.
J Environ Sci (China) ; 146: 226-236, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969450

RESUMO

Defluoridation of coal mining water is of great significance for sustainable development of coal industry in western China. A novel one-step mechanochemical method was developed to prepare polymeric aluminum modified powder activated carbon (PAC) for effective fluoride removal from coal mining water. Aluminum was stably loaded on the PAC through facile solid-phase reaction between polymeric aluminum (polyaluminum chloride (PACl) or polyaluminum ferric chloride (PAFC)) and PAC (1:15 W/W). Fluoride adsorption on PACl and PAFC modified PAC (C-PACl and C-PAFC) all reached equilibrium within 5 min, at rate of 2.56 g mg-1 sec-1 and 1.31 g mg-1 sec-1 respectively. Larger increase of binding energy of Al on C-PACl (AlF bond: 76.64 eV and AlFOH bond: 77.70 eV) relative to that of Al on C-PAFC (AlF bond: 76.52 eV) explained higher fluoride uptake capacity of C-PACl. Less chloride was released from C-PACl than that from C-PAFC due to its higher proportion of covalent chlorine and lower proportion of ionic chlorine. The elements mapping and atomic composition proved the stability of Al loaded on the PAC as well as the enrichment of fluoride on both C-PACl and C-PAFC. The Bader charge, formation energy and bond length obtained from DFT computational results explained the fluoride adsorption mechanism further. The carbon emission was 7.73 kg CO2-eq/kg adsorbent prepared through mechanochemical process, which was as low as 1:82.3 to 1:8.07 × 104 compared with the ones prepared by conventional hydrothermal methods.


Assuntos
Carvão Vegetal , Minas de Carvão , Fluoretos , Poluentes Químicos da Água , Fluoretos/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Adsorção , Alumínio/química , Polímeros/química , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
5.
Environ Sci Technol ; 57(35): 13004-13014, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37526013

RESUMO

High-resolution mass spectrometry is an advanced technique for comprehensive screening of toxic chemicals. In this study, urine samples were collected from both an occupationally exposed population at a coking site and normal inhabitants to identify novel urinary biomarkers for occupational exposure to coking contaminants. A coking-site-appropriate analytical method was developed for unknown chemical screening. Through nontarget screening, 515 differential features were identified, and finally, 32 differential compounds were confirmed as candidates for the current study, including 13 polycyclic aromatic hydrocarbon (PAH) metabolites. Besides monohydroxy-PAHs (such as 1-&2-naphthol, 2-&9-hydroxyfluorene, 2-&4-phenanthrol, and 1-&2-hydroxypyrene), many other PAH metabolites including dihydroxy metabolites, PAH oxide, and sulfate conjugate were detected, suggesting that the quantification based solely on monohydroxy-PAHs significantly underestimated the human exposure to PAHs. Furthermore, several novel compounds were recognized that could be considered as biomarkers for the exposure to coking contaminants, including quinolin-2-ol (1.10 ± 0.44 ng/mL), naphthylmethanols (11.4 ± 5.47 ng/mL), N-hydroxy-1-aminonaphthalene (0.78 ± 0.43 ng/mL), hydroxydibenzofurans (17.4 ± 7.85 ng/mL), hydroxyanthraquinone (0.13 ± 0.053 ng/mL), and hydroxybiphenyl (2.70 ± 1.03 ng/mL). Despite their lower levels compared with hydroxy-PAHs (95.1 ± 30.8 ng/mL), their severe toxicities should not be overlooked. The study provides a nontarget screening approach to identify chemicals in human urine, which is crucial for accurately assessing the health risks of toxic chemicals in the coking industry.


Assuntos
Cocaína , Coque , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Coque/análise , Cromatografia Líquida de Alta Pressão , Exposição Ocupacional/análise , Cocaína/análise , Biomarcadores , Monitoramento Ambiental/métodos
6.
Environ Sci Technol ; 57(41): 15379-15391, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37775339

RESUMO

Coking contamination in China is complex and poses potential health risks to humans. In this study, we collected urine samples from coking plant workers, nearby residents, and control individuals to analyze 25 coking-produced aromatic compounds (ACs), including metabolites of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, chlorophenols, and nitrophenols. The median concentration of total ACs in urine of workers was 102 µg·g-1 creatinine, significantly higher than that in the other two groups. Hydroxy-PAHs and hydroxy hetero-PAHs were the dominant ACs. Workers directly exposed from coking industrial processes, i.e., coking, coal preparation, and chemical production processes, showed higher concentrations of hydroxy-PAHs and hydroxy hetero-PAHs (excluding 5-hydroxyisoquinoline), while those from indirect exposure workshops had higher levels of other ACs, indicating different sources in the coking plant. The AC mixture in workers demonstrated positive effects on DNA damage and lipid peroxidation with 5-hydroxyisoquinoline and 3-hydroxycarbazole playing a significant role using a quantile g-computation model. Monte Carlo simulation revealed that coking contamination elevated the carcinogenic risk for exposed workers by 5-fold compared to controls with pyrene, pentachlorophenol, and carbazole contributing the most, and workers from coking process are at the highest risk. This study enhances understanding of coking-produced AC levels and provides valuable insights into coking contamination control.

7.
Ecotoxicol Environ Saf ; 256: 114913, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062264

RESUMO

The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS2) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS2 toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS2 nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS2 due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS2 promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS2, and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS2) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology.


Assuntos
Antibacterianos , Molibdênio , Antibacterianos/farmacologia , Molibdênio/farmacologia , Genes Bacterianos , Solo , Transferência Genética Horizontal , Resistência Microbiana a Medicamentos/genética , Escherichia coli , Plasmídeos
8.
Environ Geochem Health ; 45(8): 6199-6214, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37273087

RESUMO

An accurate assessment of human exposure to pollutants through the ingestion of dust and/or soil particles depends on a thorough understanding their rate of human ingestion. To this end, we investigated the load and size distribution patterns of dust/soil particles on the hands of three typical subpopulations, including preschoolers, college students, and security guards (outdoor workers). The geometric mean diameter of dust/soil particles on hands was observed to be 38.7 ± 11.2, 40.0 ± 12.1, and 36.8 ± 10.4 µm for preschoolers, college students, and security guards, respectively. The particle size distribution differed between subpopulations: Preschoolers were more exposed to fine particles, whereas security guards were exposed to more coarse particles. The geometric means of dust/soil particle loading on the hands were 0.126, 0.0163, and 0.0377 mg/cm2 for preschoolers, college students, and security guards, respectively. Males had statistically higher dust/soil particle loadings on hands than females, notably for preschoolers and college students; preschoolers with frequent hand contact with the bare ground had higher dust/soil particle loadings compared to those of peers in contact with commercial and residential grounds. The mean total dust/soil particle ingestion rate was estimated to be 245, 19.7, and 33.1 mg/day for preschoolers, college students, and security guards, respectively. Our estimates for college students and security guards are close to the consensus central-tendency values recommended by the U.S. EPA's Exposure Factor Handbook for American adults, whereas the estimates for children are much higher than the upper percentile values recommended for American children.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Criança , Masculino , Adulto , Feminino , Humanos , Poeira/análise , Solo , Poluentes Ambientais/análise , China , Ingestão de Alimentos , Exposição Ambiental/análise , Monitoramento Ambiental , Poluentes do Solo/análise
9.
Environ Sci Technol ; 56(22): 15705-15717, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36288260

RESUMO

Microplastic (MP) contamination is a serious global environmental problem. Plastic contamination has attracted extensive attention during the past decades. While physiochemical weathering may influence the properties of MPs, biodegradation by microorganisms could ultimately mineralize plastics into CO2. Compared to the well-studied marine ecosystems, the MP biodegradation process in riverine ecosystems, however, is less understood. The current study focuses on the MP biodegradation in one of the world's most plastic contaminated rivers, Pearl River, using micropolyethylene (mPE) as a model substrate. Mineralization of 13C-labeled mPE into 13CO2 provided direct evidence of mPE biodegradation by indigenous microorganisms. Several Actinobacteriota genera were identified as putative mPE degraders. Furthermore, two Mycobacteriaceae isolates related to the putative mPE degraders, Mycobacterium sp. mPE3 and Nocardia sp. mPE12, were retrieved, and their ability to mineralize 13C-mPE into 13CO2 was confirmed. Pangenomic analysis reveals that the genes related to the proposed mPE biodegradation pathway are shared by members of Mycobacteriaceae. While both Mycobacterium and Nocardia are known for their pathogenicity, these populations on the plastisphere in this study were likely nonpathogenic as they lacked virulence factors. The current study provided direct evidence for MP mineralization by indigenous biodegraders and predicted their biodegradation pathway, which may be harnessed to improve bioremediation of MPs in urban rivers.


Assuntos
Mycobacteriaceae , Poluentes Químicos da Água , Plásticos/análise , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Dióxido de Carbono/análise , Rios/química
10.
Environ Res ; 214(Pt 4): 114137, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030913

RESUMO

Dye recovery is of great significance for a circular economy and sustainable development. However, green recovery strategies without secondary pollution remain a significant challenge. To resolve this issue, a light-responsive smart material (citric acid-modified BiOCOOH (m-BOCH)) was synthesized and applied for dye recovery through adsorption in the dark, and desorption under visible light. With the modification of citric acid, the adsorption level of methylene blue (MB) on m-BOCH (43.4%) was more than six times that of pure BiOCOOH (7.1%). The desorption rate was ∼90% in 120 min under 420 nm light irradiation (there was no desorption for pure BOCH). Further, the adsorption rate was improved to 83.9% and the desorption rate remained stable at an optimal pH of 10.09. Characterization results indicated that carboxyl groups were modified onto the surface of BiOCOOH and served as adsorption sites for MB. Under visible light exposure, the connections between the carboxyl groups and BiOCOOH were damaged, which led to the desorption of MB from the surface of the m-BOCH. The recovered MB exhibited a good staining effect on hepatic stellate cells (HSC) as a fresh dye. The regeneration of m-BOCH was achieved through a moderate hydrothermal process, and the adsorption and desorption capacities were restored to 80.8% and 85.7%, respectively. This research provides a novel environmentally compatible strategy for dye recovery without secondary pollution. This is a very promising treatment technique for dye effluents, which highlights the application of smart materials resource recycling for environmental remediation.


Assuntos
Ácido Cítrico , Poluentes Químicos da Água , Adsorção , Ácido Cítrico/química , Cinética , Azul de Metileno/química , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 55(22): 15236-15245, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724783

RESUMO

The risk of human exposure to particulate novel brominated flame retardants (NBFRs) in the atmosphere has received increasing attention from scientists and the public, but currently, there is no reliable approach to predict the intake of these compounds on the basis of their size distribution. Here, we develop a reliable approach to predict the size-dependent inhalation intake of particulate NBFRs, based on the gas/particle (G/P) partitioning behavior of the NBFRs. We analyzed the concentrations of eight NBFRs in 363 size-segregated particulate samples and 99 paired samples of gaseous and bulk particles. Using these data, we developed an equation to predict the G/P partitioning quotients of NBFRs in particles in different size ranges (KPi) based on particle size. This equation was then successfully applied to predict the size-dependent inhalation intake of particulate NBFRs in combination with an inhalation exposure model. This new approach provides the first demonstration of the effects of the temperature-dependent octanol-air partitioning coefficient (KOA) and total suspended particle concentration (TSP) on the intake of particulate NBFRs by inhalation. In an illustrative case where TSP = 100 µg m-3, inhalation intake of particulate NBFRs exceeded the intake of gaseous NBFRs when log KOA > 11.4.


Assuntos
Retardadores de Chama , Atmosfera , Poeira/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos
12.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807770

RESUMO

Shallow depth-of-field (DoF), focusing on the region of interest by blurring out the rest of the image, is challenging in computer vision and computational photography. It can be achieved either by adjusting the parameters (e.g., aperture and focal length) of a single-lens reflex camera or computational techniques. In this paper, we investigate the latter one, i.e., explore a computational method to render shallow DoF. The previous methods either rely on portrait segmentation or stereo sensing, which can only be applied to portrait photos and require stereo inputs. To address these issues, we study the problem of rendering shallow DoF from an arbitrary image. In particular, we propose a method that consists of a salient object detection (SOD) module, a monocular depth prediction (MDP) module, and a DoF rendering module. The SOD module determines the focal plane, while the MDP module controls the blur degree. Specifically, we introduce a label-guided ranking loss for both salient object detection and depth prediction. For salient object detection, the label-guided ranking loss comprises two terms: (i) heterogeneous ranking loss that encourages the sampled salient pixels to be different from background pixels; (ii) homogeneous ranking loss penalizes the inconsistency of salient pixels or background pixels. For depth prediction, the label-guided ranking loss mainly relies on multilevel structural information, i.e., from low-level edge maps to high-level object instance masks. In addition, we introduce a SOD and depth-aware blur rendering method to generate shallow DoF images. Comprehensive experiments demonstrate the effectiveness of our proposed method.

13.
J Environ Sci (China) ; 103: 322-335, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743913

RESUMO

To study the pollution features and underlying mechanism of PM2.5 in Luoyang, a typical developing urban site in the central plain of China, 303 PM2.5 samples were collected from April 16 to December 29, 2015 to analyze the elements, water soluble inorganic ions, organic carbon and elemental carbon. The annual mean concentration of PM2.5 was 142.3 µg/m3, and 75% of the daily PM2.5 concentrations exceeded the 75 µg/m3. The secondary inorganic ions, organic matter and mineral dust were the most abundant species, accounting for 39.6%, 19.2% and 9.3% of the total mass concentration, respectively. But the major chemical components showed clear seasonal dependence. SO42- was most abundant specie in spring and summer, which related to intensive photochemical reaction under high O3 concentration. In contrast, the secondary organic carbon and ammonium while primary organic carbon and ammonium significantly contributed to haze formation in autumn and winter, respectively. This indicated that the collaboration effect of secondary inorganic aerosols and carbonaceous matters result in heavy haze in autumn and winter. Six main sources were identified by positive matrix factorization model: industrial emission, combustion sources, traffic emission, mineral dust, oil combustion and secondary sulfate, with the annual contribution of 24%, 20%, 24%, 4%, 5% and 23%, respectively. The potential source contribution function analysis pointed that the contribution of the local and short-range regional transportation had significant impact. This result highlighted that local primary carbonaceous and precursor of secondary carbonaceous mitigation would be key to reduce PM2.5 and O3 during heavy haze episodes in winter and autumn.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
14.
Environ Sci Technol ; 54(21): 13888-13898, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078945

RESUMO

Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 µm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyz:EGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Apoptose , Ecossistema , Larva , Macrófagos , Nylons/toxicidade , Estresse Oxidativo , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
15.
Ecotoxicol Environ Saf ; 198: 110649, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325259

RESUMO

Immobilized cells (ICs) have been widely used to enhance the remediation of organic-contaminated soil (e.g., polycyclic aromatic hydrocarbons, PAHs). Once ICs are added to the heterogeneous soil, degradation hotspots are immediately formed near the carrier, leaving the remaining soil lack of degrading bacteria. Therefore, it remains unclear how ICs efficiently utilize PAHs in soil. In this study, the viability of Silica-IC (Cells@Sawdust@Silica) and the distribution of inoculated ICs and phenanthrene (Phe) in a slurry system (soil to water ratio 1:2) were investigated to explore the removal mechanism of PAHs by the ICs. Results showed that the Silica-IC maintained (i) good reproductive ability (displayed by the growth curve in soil and water phase), (ii) excellent stability, which was identified by the ratio of colony forming units in the soil phase to the water phase, the difference between the colony number and the DNA copies, and characteristics of the biomaterial observed by the FESEM, and (iii) high metabolic activity (the removal percentages of Phe in soil by the ICs were more than 95% after 48 h). Finally, the possible pathways for the ICs to efficiently utilize Phe in soil are proposed based on the distribution and correlation of Phe and ICs between the soil and water phase. The adsorption-degradation process was dominant, i.e., the enhanced degradation occurred between the ICs and carrier-adsorbed Phe. This study provided new insights on developing a bio-material for efficient bio-remediation of PAHs-contaminated soil.


Assuntos
Células Imobilizadas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Fenantrenos/análise , Dióxido de Silício/química , Poluentes do Solo/análise , Sphingomonas/metabolismo , Madeira/química , Adsorção , Biodegradação Ambiental , Células Imobilizadas/efeitos dos fármacos , Modelos Teóricos , Fenantrenos/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sphingomonas/efeitos dos fármacos
16.
Ecotoxicol Environ Saf ; 198: 110676, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361496

RESUMO

Triclosan (TCS), an extensively used broad-spectrum antimicrobial agent, has raised significant environmental concerns regarding its widespread occurrence in waters. In this study, the removal of TCS in aqueous solution via peroxymonosulfate (PMS) activated by an extremely low-level Co2+ (0.02 µM) was systematically investigated. During preliminary test, TCS (10 µM) was totally degraded in 30 min by using 0.1 µM Co2+ and 40 µM PMS at pH 7.0 with a degradation rate constant of 0.1219 min-1. A first-order apparent degradation rate of TCS was found with respect to the PMS concentrations. At extremely low dosage of Co2+ (0.02 µM), the presence of NO3-, HCO3-, PLFA, and SRHA within test concentrations significantly inhibited TCS removal, while a dual effect of Cl- on the degradation rate of TCS was observed. The quenching experiments verified that SO4- was the dominant reactive oxygen species (ROS) rather than OH. Six major intermediates were identified using TOF-LC-MS, based on which we proposed three associated reaction pathways including hydroxylation, ether bond breakage, and dechlorination. Toxicity predictions by ECOSAR software exhibited aquatic toxicity reduction of TCS after Co2+/PMS treatment. We outlook these findings to advance the feasibility of organic contaminants removal via Co2+/PMS system with Co2+ at extremely low levels.


Assuntos
Cobalto/análise , Peróxidos/análise , Triclosan/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Cinética , Triclosan/química , Água
17.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906757

RESUMO

The local reference frame (LRF) acts as a critical role in 3D local shape description and matching. However, most existing LRFs are hand-crafted and suffer from limited repeatability and robustness. This paper presents the first attempt to learn an LRF via a Siamese network that needs weak supervision only. In particular, we argue that each neighboring point in the local surface gives a unique contribution to LRF construction and measure such contributions via learned weights. Extensive analysis and comparative experiments on three public datasets addressing different application scenarios have demonstrated that LRF-Net is more repeatable and robust than several state-of-the-art LRF methods (LRF-Net is only trained on one dataset). We show that LRFNet achieves 0.686 MeanCos performance on the UWA 3D modeling (UWA3M) dataset, outperforming the closest method by 0.18. In addition, LRF-Net can significantly boost the local shape description and 6-DoF pose estimation performance when matching 3D point clouds.

18.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003283

RESUMO

The combination of biomechanics and inertial pedestrian navigation research provides a very promising approach for pedestrian positioning in environments where Global Positioning System (GPS) signal is unavailable. However, in practical applications such as fire rescue and indoor security, the inertial sensor-based pedestrian navigation system is facing various challenges, especially the step length estimation errors and heading drift in running and sprint. In this paper, a trinal-node, including two thigh-worn inertial measurement units (IMU) and one waist-worn IMU, based simultaneous localization and occupation grid mapping method is proposed. Specifically, the gait detection and segmentation are realized by the zero-crossing detection of the difference of thighs pitch angle. A piecewise function between the step length and the probability distribution of waist horizontal acceleration is established to achieve accurate step length estimation both in regular walking and drastic motions. In addition, the simultaneous localization and mapping method based on occupancy grids, which involves the historic trajectory to improve the pedestrian's pose estimation is introduced. The experiments show that the proposed trinal-node pedestrian inertial odometer can identify and segment each gait cycle in the walking, running, and sprint. The average step length estimation error is no more than 3.58% of the total travel distance in the motion speed from 1.23 m/s to 3.92 m/s. In combination with the proposed simultaneous localization and mapping method based on the occupancy grid, the localization error is less than 5 m in a single-story building of 2643.2 m2.

19.
Environ Sci Technol ; 53(24): 14700-14708, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31633338

RESUMO

To comprehensively clarify human exposure to halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs) through dermal uptake and hand-to-mouth intake, skin wipe samples from four typical skin locations from 30 volunteers were collected. The total concentration of the target chemicals (24 HFRs and 16 PCBs) ranged from 203 to 4470 ng/m2. BDE-209 and DBDPE accounted for about 37 and 40% of ∑24HFRs, respectively, and PCB-41 and PCB-110 were the dominant PCB congeners, with proportion of 24 and 10%, respectively. Although exhibiting relatively lower concentrations of contaminants than bared skin locations, clothing-covered skin areas were also detected with considerable levels of HFRs and PCBs, indicating clothing to be a potentially significant exposure source. Significant differences in HFR and PCB levels and profiles were also observed between males and females, with more lower-volatility chemicals in male-bared skin locations and more higher-volatility compounds in clothing-covered skin locations of female participants. The mean estimated whole-body dermal absorption doses of ∑8HFRs and ∑16PCBs (2.9 × 10-4 and 6.7 × 10-6 mg/kg·d) were 1-2 orders of magnitude higher than ingestion doses via hand-to-mouth contact (6.6 × 10-7 and 3.1 × 10-7 mg/kg·d). The total noncarcinogenic health risk resulted from whole-body dermal absorption and oral ingestion to ∑7HFRs and ∑16PCBs were 5.2 and 0.35, respectively.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Bifenilos Policlorados , Vestuário , Monitoramento Ambiental , Feminino , Éteres Difenil Halogenados , Humanos , Masculino , Medição de Risco
20.
Environ Sci Technol ; 53(7): 3880-3887, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30848581

RESUMO

The health impact of haze is of great concern, but few studies have explored its influence on human inhalation and dermal exposure to trace pollutants. Size-segregated atmospheric particles ( n = 72) and forehead wipe samples ( n = 80) from undergraduates were collected in Xinxiang, China, during a prolonged haze episode and analyzed for 10 organophosphate flame retardants (OPFRs). ∑TCPP and TCEP were the most abundant OPFR substances in all samples. The arithmetic mean particle-bound and forehead OPFR concentrations under a heavy pollution condition (air quality index (AQI), 350-550) were 41.9 ng/m3 (∑8OPFRs) and 7.4 µg/m2 (∑6OPFRs), respectively, apparently greater than the values observed under a light pollution condition (AQI, 60-90) (19.5 ng/m3 and 3.9 µg/m2, respectively). Meteorological conditions played distinctive roles in affecting the OPFR occurrence in atmospheric particles (statistically significant for TCEP and ∑TCPP) and forehead wipes (excluding TPHP), implying that OPFR exposure through inhalation and dermal absorption was synchronously influenced by air quality, and OPFRs on the forehead may be mainly absorbed from the air. Inhalation contributed dominantly to the total OPFR exposure dose for humans when using the relative absorption method to assess dermal exposure, while according to the permeability coefficient method, dermal exposure was much more significant than inhalation. The results of this study indicate that OPFR exposure should attract particular concern in regions with heavy air pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Retardadores de Chama , China , Poeira , Humanos , Organofosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA