RESUMO
The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium phyllosilicates, ammoniated phyllosilicates and carbonates. Here we report high spatial and spectral resolution near-infrared observations of the bright areas in the Occator crater on Ceres. Spectra of these bright areas are consistent with a large amount of sodium carbonate, constituting the most concentrated known extraterrestrial occurrence of carbonate on kilometre-wide scales in the Solar System. The carbonates are mixed with a dark component and small amounts of phyllosilicates, as well as ammonium carbonate or ammonium chloride. Some of these compounds have also been detected in the plume of Saturn's sixth-largest moon Enceladus. The compounds are endogenous and we propose that they are the solid residue of crystallization of brines and entrained altered solids that reached the surface from below. The heat source may have been transient (triggered by impact heating). Alternatively, internal temperatures may be above the eutectic temperature of subsurface brines, in which case fluids may exist at depth on Ceres today.
RESUMO
Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
Assuntos
Meio Ambiente Extraterreno/química , Gelo/análise , Meteoroides , Difusão , Gases/análise , Gases/química , Análise EspectralRESUMO
Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.
Assuntos
Meio Ambiente Extraterreno/química , Gelo/análise , Meteoroides , Temperatura , Fatores de Tempo , VolatilizaçãoRESUMO
Studies of the dwarf planet (1) Ceres using ground-based and orbiting telescopes have concluded that its closest meteoritic analogues are the volatile-rich CI and CM carbonaceous chondrites. Water in clay minerals, ammoniated phyllosilicates, or a mixture of Mg(OH)2 (brucite), Mg2CO3 and iron-rich serpentine have all been proposed to exist on the surface. In particular, brucite has been suggested from analysis of the mid-infrared spectrum of Ceres. But the lack of spectral data across telluric absorption bands in the wavelength region 2.5 to 2.9 micrometres--where the OH stretching vibration and the H2O bending overtone are found--has precluded definitive identifications. In addition, water vapour around Ceres has recently been reported, possibly originating from localized sources. Here we report spectra of Ceres from 0.4 to 5 micrometres acquired at distances from ~82,000 to 4,300 kilometres from the surface. Our measurements indicate widespread ammoniated phyllosilicates across the surface, but no detectable water ice. Ammonia, accreted either as organic matter or as ice, may have reacted with phyllosilicates on Ceres during differentiation. This suggests that material from the outer Solar System was incorporated into Ceres, either during its formation at great heliocentric distance or by incorporation of material transported into the main asteroid belt.
RESUMO
Olivine is a major component of the mantle of differentiated bodies, including Earth. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta, which is the lone surviving, large, differentiated, basaltic rocky protoplanet in the Solar System. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, typically with a concentration of less than 25 per cent by volume. Olivine was tentatively identified on Vesta, on the basis of spectral and colour data, but other observations did not confirm its presence. Here we report that olivine is indeed present locally on Vesta's surface but that, unexpectedly, it has not been found within the deep, south-pole basins, which are thought to be excavated mantle rocks. Instead, it occurs as near-surface materials in the northern hemisphere. Unlike the meteorites, the olivine-rich (more than 50 per cent by volume) material is not associated with diogenite but seems to be mixed with howardite, the most common surface material. Olivine is exposed in crater walls and in ejecta scattered diffusely over a broad area. The size of the olivine exposures and the absence of associated diogenite favour a mantle source, but the exposures are located far from the deep impact basins. The amount and distribution of observed olivine-rich material suggest a complex evolutionary history for Vesta.
RESUMO
Localized dark and bright materials, often with extremely different albedos, were recently found on Vesta's surface. The range of albedos is among the largest observed on Solar System rocky bodies. These dark materials, often associated with craters, appear in ejecta and crater walls, and their pyroxene absorption strengths are correlated with material brightness. It was tentatively suggested that the dark material on Vesta could be either exogenic, from carbon-rich, low-velocity impactors, or endogenic, from freshly exposed mafic material or impact melt, created or exposed by impacts. Here we report Vesta spectra and images and use them to derive and interpret the properties of the 'pure' dark and bright materials. We argue that the dark material is mainly from infall of hydrated carbonaceous material (like that found in a major class of meteorites and some comet surfaces), whereas the bright material is the uncontaminated indigenous Vesta basaltic soil. Dark material from low-albedo impactors is diffused over time through the Vestan regolith by impact mixing, creating broader, diffuse darker regions and finally Vesta's background surface material. This is consistent with howardite-eucrite-diogenite meteorites coming from Vesta.
RESUMO
The Mapping channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) aboard Rosetta acquired many hyperspectral images of comet 67P/Churyumov-Gerasimenko (hereafter 67P). The VIS channel detector responsivity was dependent on the VIS detector temperature (TVIS). This affects the absolute values of the measured spectra (for a TVIS increase of 1 K between 0.06% increase at 0.55 µm and 1.2% increase at 1 µm) and the spectral slopes. Here, we derive a simple parameterization of this CCD-typical effect based on a statistical analysis of the TVIS-related bias of the measurements. At this, we include all measured VIS spectra excluding acquisitions with little nucleus surface information or at opposition geometry, thereby achieving a high statistical significance and representativity. The corresponding VIS detector responsivity correction, slightly different for measurements acquired when the IR cryocooler was off or on, makes the spectra measured at different instrument temperatures consistent over the entire Rosetta mission phase at 67P. This will improve future quantitative analyses of the data.
RESUMO
Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.
RESUMO
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.
Assuntos
Meio Ambiente Extraterreno/química , Gases/análise , Gelo/análise , Raios Infravermelhos , Lua , Fotografação , Saturno , Atmosfera/química , Gases/química , Geografia , Hidrocarbonetos/análise , Hidrocarbonetos/química , Metano/análise , Metano/química , AstronaveRESUMO
The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.
RESUMO
The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.
Assuntos
Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Clima , Meio Ambiente Extraterreno/química , Marte , Argila , Concentração de Íons de Hidrogênio , Ferro/análise , Magnésio/análise , Voo Espacial , Astronave , Sulfatos/análise , Sulfatos/química , Água/análise , Água/químicaRESUMO
The Visible and near Infrared Hyperspectral Imager (VIHI) is the VIS-IR spectrometer with imaging capabilities aboard the ESA BepiColombo mission to Mercury. In this second paper, we report the instrument spectral characterization derived by the calibration campaign carried out before spacecraft integration. Complementary measurements concerning radiometric and linearity responses, as well as geometric performances, are described in Paper I [G. Filacchione et al., Rev. Sci. Instrum. 88, 094502 (2017)]. We have verified the VIHI spectral range, spectral dispersion, spectral response function, and spectral uniformity along the whole slit. Instrumental defects and optical aberrations due to smiling and keystone effects have been evaluated, and they are lower than the design requirement (<1/3 pixel). The instrumental response is uniform along the whole slit, while spectral dispersion is well represented by a second order curve, rather than to be constant along the spectral dimension.
RESUMO
Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.
RESUMO
The dwarf planet Ceres is known to host phyllosilicate minerals at its surface, but their distribution and origin have not previously been determined. We used the spectrometer onboard the Dawn spacecraft to map their spatial distribution on the basis of diagnostic absorption features in the visible and near-infrared spectral range (0.25 to 5.0 micrometers). We found that magnesium- and ammonium-bearing minerals are ubiquitous across the surface. Variations in the strength of the absorption features are spatially correlated and indicate considerable variability in the relative abundance of the phyllosilicates, although their composition is fairly uniform. These data, along with the distinctive spectral properties of Ceres relative to other asteroids and carbonaceous meteorites, indicate that the phyllosilicates were formed endogenously by a globally widespread and extensive alteration process.
RESUMO
Carbon dioxide (CO2) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO2 ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO2 ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO2 ice and the depth of the eroded surface layer. We interpret the presence of CO2 ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.
RESUMO
The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.
RESUMO
The mineralogy of Vesta, based on data obtained by the Dawn spacecraft's visible and infrared spectrometer, is consistent with howardite-eucrite-diogenite meteorites. There are considerable regional and local variations across the asteroid: Spectrally distinct regions include the south-polar Rheasilvia basin, which displays a higher diogenitic component, and equatorial regions, which show a higher eucritic component. The lithologic distribution indicates a deeper diogenitic crust, exposed after excavation by the impact that formed Rheasilvia, and an upper eucritic crust. Evidence for mineralogical stratigraphic layering is observed on crater walls and in ejecta. This is broadly consistent with magma-ocean models, but spectral variability highlights local variations, which suggests that the crust can be a complex assemblage of eucritic basalts and pyroxene cumulates. Overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle.
RESUMO
We investigated the origin of unusual pitted terrain on asteroid Vesta, revealed in images from the Dawn spacecraft. Pitted terrain is characterized by irregular rimless depressions found in and around several impact craters, with a distinct morphology not observed on other airless bodies. Similar terrain is associated with numerous martian craters, where pits are thought to form through degassing of volatile-bearing material heated by the impact. Pitted terrain on Vesta may have formed in a similar manner, which indicates that portions of the surface contain a relatively large volatile component. Exogenic materials, such as water-rich carbonaceous chondrites, may be the source of volatiles, suggesting that impactor materials are preserved locally in relatively high abundance on Vesta and that impactor composition has played an important role in shaping the asteroid's geology.
RESUMO
The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter(-2) kelvin(-1) second(-0.5), comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.
RESUMO
Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.