Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 142(2): 284-95, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655469

RESUMO

Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Plantas/microbiologia
2.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175801

RESUMO

Phafins are PH (Pleckstrin Homology) and FYVE (Fab1, YOTB, Vac1, and EEA1) domain-containing proteins. The Phafin protein family is classified into two groups based on their sequence homology and functional similarity: Phafin1 and Phafin2. This protein family is unique because both the PH and FYVE domains bind to phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide primarily found in endosomal and lysosomal membranes. Phafin proteins act as PtdIns(3)P effectors in apoptosis, endocytic cargo trafficking, and autophagy. Additionally, Phafin2 is recruited to macropinocytic compartments through coincidence detection of PtdIns(3)P and PtdIns(4)P. Membrane-associated Phafins serve as adaptor proteins that recruit other binding partners. In addition to the phosphoinositide-binding domains, Phafin proteins present a poly aspartic acid motif that regulates membrane binding specificity. In this review, we summarize the involvement of Phafins in several cellular pathways and their potential physiological functions while highlighting the similarities and differences between Phafin1 and Phafin2. Besides, we discuss research perspectives for Phafins.


Assuntos
Proteínas de Transporte , Fosfatidilinositóis , Proteínas de Transporte/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Membranas Intracelulares/metabolismo , Apoptose , Endossomos/metabolismo , Ligação Proteica
3.
Bioessays ; 38 Suppl 1: S45-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27417122

RESUMO

Disabled-2 (Dab2) is a multimodular scaffold protein with signaling roles in the domains of cell growth, trafficking, differentiation, and homeostasis. Emerging evidences place Dab2 as a novel modulator of cell-cell interaction; however, its mode of action has remained largely elusive. In this review, we highlight the relevance of Dab2 function in cell signaling and development and provide the most recent and comprehensive analysis of Dab2's action as a mediator of homotypical and heterotypical interactions. Accordingly, Dab-2 controls the extent of platelet aggregation through various motifs within its N-terminus. Dab2 interacts with the cytosolic tail of the integrin receptor blocking inside-out signaling, whereas extracellular Dab2 competes with fibrinogen for integrin αIIb ß3 receptor binding and, thus, modulates outside-in signaling. An additional level of regulation results from Dab2's association with cell surface lipids, an event that defines the extent of cell-cell interactions. As a multifaceted regulator, Dab2 acts as a mediator of endocytosis through its association with the [FY]xNPx[YF] motifs of internalized cell surface receptors, phosphoinositides, and clathrin. Other emerging roles of Dab2 include its participation in developmental mechanisms required for tissue formation and in modulation of immune responses. This review highlights the various novel mechanisms by which Dab2 mediates an array of signaling events with vast physiological consequences.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas Reguladoras de Apoptose , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Transporte Proteico , Proteínas Supressoras de Tumor/fisiologia
4.
J Circadian Rhythms ; 13: 7, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27103933

RESUMO

BACKGROUND: Circadian rhythms are daily changes in our physiology and behavior that are manifested as patterns of brain wave activity, periodic hormone production, recurring cell regeneration, and other oscillatory biological activities. Their importance to human health is becoming apparent; they are deranged by shift work and jet-lag and in disparate conditions such as insomnia, sleep syndromes, coronary heart attacks, and depression, and are endogenous factors that contribute to cancer development and progression. DISCUSSION: As evidence of the circadian connection to human health has grown, so has the number of Americans experiencing disruption of circadian rhythms due to the demands of an industrialized society. Today, there is a growing work force that experiences night shift work and time-zone shifts shaping the demands on physicians to best meet the needs of patients exposed to chronic circadian disruptions. The diverse range of illness associated with altered rhythms suggests that physicians in various fields will see its impact in their patients. However, medical education, with an already full curriculum, struggles to address this issue. SUMMARY: Here, we emphasize the need for incorporating the topic of circadian rhythms in the medical curriculum and propose strategies to accomplish this goal.

5.
Biophys J ; 106(5): 1101-11, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606934

RESUMO

The Wnt-dependent, ß-catenin-independent pathway modulates cell movement and behavior. A downstream regulator of this signaling pathway is Dishevelled (Dvl), which, among other multiple interactions, binds to the Frizzled receptor and the plasma membrane via phosphatidic acid (PA) in a mechanism proposed to be pH-dependent. While the Dvl DEP domain is central to the ß-catenin-independent Wnt signaling function, the mechanism underlying its physical interaction with the membrane remains elusive. In this report, we elucidate the structural and functional basis of PA association to the Dvl2 DEP domain. Nuclear magnetic resonance, molecular-dynamics simulations, and mutagenesis data indicated that the domain interacted with the phospholipid through the basic helix 3 and a contiguous loop with moderate affinity. The association suggested that PA binding promoted local conformational changes in helix 2 and ß-strand 4, both of which are compromised to maintain a stable hydrophobic core in the DEP domain. We also show that the Dvl2 DEP domain bound PA in a pH-dependent manner in a mechanism that resembles deprotonation of PA. Collectively, our results structurally define the PA-binding properties of the Dvl2 DEP domain, which can be exploited for the investigation of binding mechanisms of other DEP domain-interacting proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fenômenos Biofísicos , Simulação de Dinâmica Molecular , Ácidos Fosfatídicos/metabolismo , Membrana Celular/metabolismo , Receptores Frizzled/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
6.
J Biol Chem ; 288(36): 25780-25791, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23880770

RESUMO

A large number of cellular signaling processes are directed through internalization, via endocytosis, of polyubiquitinated cargo proteins. Tollip is an adaptor protein that facilitates endosomal cargo sorting for lysosomal degradation. Tollip preferentially binds phosphatidylinositol 3-phosphate (PtdIns(3)P) via its C2 domain, an association that may be required for endosomal membrane targeting. Here, we show that Tollip binds ubiquitin through its C2 and CUE domains and that its association with the C2 domain inhibits PtdIns(3)P binding. NMR analysis demonstrates that the C2 and CUE domains bind to overlapping sites on ubiquitin, suggesting that two ubiquitin molecules associate with Tollip simultaneously. Hydrodynamic studies reveal that ubiquitin forms heterodimers with the CUE domain, indicating that the association disrupts the dimeric state of the CUE domain. We propose that, in the absence of polyubiquitinated cargo, the dual binding of ubiquitin partitions Tollip into membrane-bound and membrane-free states, a function that contributes to the engagement of Tollip in both membrane trafficking and cytosolic pathways.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Fosfatidilinositóis/química , Ubiquitina/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
7.
J Pept Sci ; 20(3): 216-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24470337

RESUMO

A procedure for obtaining isotopically labeled peptides, by combining affinity chromatography, urea-equilibrated gel filtration, and hydrophobic chromatography procedures, is presented using the Disabled-2 (Dab2) sulfatide-binding motif (SBM) as a proof of concept. The protocol is designed to isolate unstructured, membrane-binding, recombinant peptides that co-purify with bacterial proteins (e.g., chaperones). Dab2 SBM is overexpressed in bacteria as an isotopically labeled glutathione S-transferase (GST) fusion protein using minimal media containing [¹5N] ammonium chloride as the nitrogen source. The fusion protein is purified using glutathione beads, and Dab2 SBM is released from GST using a specific protease. It is then dried, resuspended in urea to release the bound bacterial protein, and subjected to urea-equilibrated gel filtration. Urea and buffer reagents are removed using an octadecyl column. The peptide is eluted with acetonitrile, dried, and stored at -80 °C. Purification of Dab2 SBM can be accomplished in 6 days with a yield of ~2 mg/l of culture. The properties of Dab2 SBM can be studied in the presence of detergents using NMR spectroscopy. Although this method also allows for the purification of unlabeled peptides that co-purify with bacterial proteins, the procedure is more relevant to isotopically labeled peptides, thus alleviating the cost of peptide production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Isótopos/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas Supressoras de Tumor/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Peptídeos/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
J Immunol ; 189(2): 1014-23, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706082

RESUMO

Low-dose endotoxemia is prevalent in humans with adverse health conditions, and it correlates with the pathogenesis of chronic inflammatory diseases such as atherosclerosis, diabetes, and neurologic inflammation. However, the underlying molecular mechanisms are poorly understood. In this study, we demonstrate that subclinical low-dose LPS skews macrophages into a mild proinflammatory state, through cell surface TLR4, IL-1R-associated kinase-1, and the Toll-interacting protein. Unlike high-dose LPS, low-dose LPS does not induce robust activation of NF-κB, MAPKs, PI3K, or anti-inflammatory mediators. Instead, low-dose LPS induces activating transcription factor 2 through Toll-interacting protein-mediated generation of mitochondrial reactive oxygen species, allowing mild induction of proinflammatory mediators. Low-dose LPS also suppresses PI3K and related negative regulators of inflammatory genes. Our data reveal novel mechanisms responsible for skewed and persistent low-grade inflammation, a cardinal feature of chronic inflammatory diseases.


Assuntos
Regulação da Expressão Gênica/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Macrófagos/patologia , Fator 2 Ativador da Transcrição/fisiologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Células Cultivadas , Relação Dose-Resposta Imunológica , Mediadores da Inflamação/fisiologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/imunologia , Mitocôndrias/patologia , Fosfatidilinositol 3-Quinase/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia
9.
J Biol Chem ; 287(45): 37691-702, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22977233

RESUMO

Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for α(IIb)ß(3) integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation. The three-dimensional structure of a Dab2-derived peptide encompassing the sulfatide-binding motifs has been determined in dodecylphosphocholine micelles using NMR spectroscopy. Dab2 sulfatide-binding motif contains two helices when embedded in micelles, reversibly binds to sulfatides with moderate affinity, lies parallel to the micelle surface, and when added to a platelet mixture, reduces the number and size of sulfatide-induced aggregates. Overall, our findings identify and structurally characterize a minimal region in Dab2 that modulates platelet homotypic interactions, all of which provide the foundation for rational design of a new generation of anti-aggregatory low-molecular mass molecules for therapeutic purposes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Peptídeos/química , Peptídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Sulfoglicoesfingolipídeos/química , Proteínas Supressoras de Tumor/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Dicroísmo Circular , Humanos , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Adesividade Plaquetária/efeitos dos fármacos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Sulfoglicoesfingolipídeos/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Mol Plant Microbe Interact ; 26(3): 330-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23075041

RESUMO

Oomycetes such as Phytophthora sojae employ effector proteins that enter plant cells to facilitate infection. Entry of some effector proteins is mediated by RxLR motifs in the effectors and phosphoinositides (PIP) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effectors involved in PIP recognition. We have structurally and functionally characterized the P. sojae effector, avirulence homolog-5 (Avh5). Using nuclear magnetic resonance (NMR) spectroscopy, we demonstrate that Avh5 is helical in nature, with a long N-terminal disordered region. NMR titrations of Avh5 with the PtdIns(3)P head group, inositol 1,3-bisphosphate, directly identified the ligand-binding residues. A C-terminal lysine-rich helical region (helix 2) was the principal lipid-binding site, with the N-terminal RxLR (RFLR) motif playing a more minor role. Mutations in the RFLR motif affected PtdIns(3)P binding, while mutations in the basic helix almost abolished it. Mutations in the RFLR motif or in the basic region both significantly reduced protein entry into plant and human cells. Both regions independently mediated cell entry via a PtdIns(3)P-dependent mechanism. Based on these findings, we propose a model where Avh5 interacts with PtdIns(3)P through its C terminus, and by binding of the RFLR motif, which promotes host cell entry.


Assuntos
Glycine max/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Phytophthora/metabolismo , Doenças das Plantas/parasitologia , Proteínas/química , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Dicroísmo Circular , Interações Hospedeiro-Parasita , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Mutação , Phytophthora/citologia , Phytophthora/genética , Phytophthora/patogenicidade , Raízes de Plantas/parasitologia , Ligação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão , Ressonância de Plasmônio de Superfície , Temperatura
11.
Adv Exp Med Biol ; 991: 27-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23775689

RESUMO

Sulfatides are sphingolipids commonly found at the surface of most of eukaryotic cells. Sulfatides are not just structural components of the plasma membrane but also participate in a wide range of cellular processes including protein trafficking, cell adhesion and aggregation, axon-myelin interactions, neural plasticity, and immune responses, among others. The intriguing question is how can sulfatides trigger such cellular processes? Their dynamic presence and specific localization at plasma membrane sites may explain their multitasking role. Crystal and NMR structural studies have provided the basis for understanding the mechanism of binding by sulfatide-interacting proteins. These proteins generally exhibit a hydrophobic cavity that is responsible for the interaction with the sulfatide acyl chain, whereas the hydrophilic, negatively charged moiety can be found either buried in the hydrophobic cavity of the protein or exposed for additional intermolecular associations. Since sulfatides vary in their acyl chain composition, which are tissue-dependent, more emphasis on understanding acyl chain specificity by sulfatide-binding proteins is warranted. Importantly, changes in cellular sulfatide levels as well as circulating sulfatides in serum directly impact cardiovascular and cancer disease development and progress. Therefore, sulfatides might prove useful as novel biomarkers. The scope of this review is to overview cell functions and mechanisms of sulfatide recognition to better understand the role of these lipids in health and disease.


Assuntos
Proteínas de Transporte/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Animais , Autoimunidade , Doenças Cardiovasculares/etiologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Neoplasias/etiologia , Adesividade Plaquetária , Agregação Plaquetária
12.
Biochim Biophys Acta ; 1808(11): 2734-44, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21820403

RESUMO

Disabled-2 (Dab2) is an adaptor protein involved in several biological processes ranging from endocytosis to platelet aggregation. During endocytosis, the Dab2 phosphotyrosine-binding (PTB) domain mediates protein binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the inner leaflet of the plasma membrane. As a result of platelet activation, Dab2 is released from α-granules and associates with both the αIIbß3 integrin receptor and sulfatide lipids on the platelet surface through its N-terminal region including the PTB domain (N-PTB), thus, modulating platelet aggregation. Thrombin, a strong platelet agonist, prevents Dab2 function by cleaving N-PTB within the two basic motifs required for sulfatide association, a reaction that is prevented when Dab2 is bound to these sphingolipids. We have characterized the membrane binding properties of Dab2 N-PTB using micelles enriched with Dab2 lipid ligands, sulfatides and PtdIns(4,5)P(2). Remarkably, NMR spectroscopy studies suggested differences in lipid-binding mechanisms. In addition, we experimentally demonstrated that sulfatide- and PtdIns(4,5)P(2)-binding sites overlap in Dab2 N-PTB and that both lipids stabilize the protein against temperature-induced unfolding. We found that whereas sulfatides induced conformational changes and facilitated Dab2 N-PTB penetration into micelles, Dab2 N-PTB bound to PtdIns(4,5)P(2) lacked these properties. These results further support our model that platelet membrane sulfatides, but not PtdIns(4,5)P(2), protect Dab2 N-PTB from thrombin cleavage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipossomos/química , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Micelas , Dados de Sequência Molecular , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Sulfoglicoesfingolipídeos/química , Ressonância de Plasmônio de Superfície , Proteínas Supressoras de Tumor
13.
Biochem J ; 435(3): 597-608, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21294713

RESUMO

TLRs (Toll-like receptors) provide a mechanism for host defence immune responses. Activated TLRs lead to the recruitment of adaptor proteins to their cytosolic tails, which in turn promote the activation of IRAKs (interleukin-1 receptor-associated kinases). IRAKs act upon their transcription factor targets to influence the expression of genes involved in the immune response. Tollip (Toll-interacting protein) modulates IRAK function in the TLR signalling pathway. Tollip is multimodular, with a conserved C2 domain of unknown function. We found that the Tollip C2 domain preferentially interacts with phosphoinositides, most notably with PtdIns3P (phosphatidylinositol 3-phosphate) and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate), in a Ca2+-independent manner. However, NMR analysis demonstrates that the Tollip C2 domain binds Ca2+, which may be required to target the membrane interface. NMR and lipid-protein overlay analyses suggest that PtdIns3P and PtdIns(4,5)P2 share interacting residues in the protein. Kinetic studies reveal that the C2 domain reversibly binds PtdIns3P and PtdIns(4,5)P2, with affinity values in the low micromolar range. Mutational analysis identifies key PtdIns3P- and PtdIns(4,5)P2-binding conserved basic residues in the protein. Our findings suggest that basic residues of the C2 domain mediate membrane targeting of Tollip by interaction with phosphoinositides, which contribute to the observed partition of the protein in different subcellular compartments.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfatidilinositóis/metabolismo , Cálcio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Mutação , Fosfatidilinositóis/química , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
14.
Front Mol Biosci ; 9: 1080161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533082

RESUMO

Sulfatide is an abundant glycosphingolipid in the mammalian nervous system, kidney, trachea, gastrointestinal tract, spleen, and pancreas and is found in low levels in other tissues. Sulfatide is characterized by the presence of a sulfate group in the hydrophilic galactose moiety, with isoforms differing in their sphingosine base and the length, unsaturation, and hydroxylation of their acyl chain. Sulfatide has been associated with a variety of cellular processes including immune responses, cell survival, myelin organization, platelet aggregation, and host-pathogen interactions. Structural studies of protein-sulfatide interactions markedly advanced our understanding of their molecular contacts, key-interacting residues, orientation of the sulfatide in its binding site, and in some cases, sulfatide-mediated protein oligomerization. To date, all protein-sulfatide interactions are reported to display dissociation constants in the low micromolar range. At least three distinct modes of protein-sulfatide binding were identified: 1) protein binding to short consensus stretches of amino acids that adopt α-helical-loop-α-helical conformations; 2) sulfatide-bound proteins that present the sulfatide head group to another protein; and 3) proteins that cage sulfatides. The scope of this review is to present an up-to-date overview of these molecular mechanisms of sulfatide recognition to better understand the role of this glycosphingolipid in physiological and pathological states.

15.
Membranes (Basel) ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877899

RESUMO

Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.

16.
Biomol NMR Assign ; 16(1): 27-30, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739631

RESUMO

Phafin2 is a peripheral protein that triggers cellular signaling from endosomal and lysosomal compartments. The specific subcellular localization of Phafin2 is mediated by the presence of a tandem of phosphatidylinositol 3-phosphate (PtdIns3P)-binding domains, the pleckstrin homology (PH) and the Fab-1, YOTB, Vac1, and EEA1 (FYVE) domains. The requirement for both domains for binding to PtdIns3P still remains unclear. To understand the molecular interactions of the Phafin2 PH domain in detail, we report its nearly complete 1H, 15N, and 13C backbone resonance assignments.


Assuntos
Domínios de Homologia à Plecstrina , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Endossomos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
17.
Br J Haematol ; 154(1): 122-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21539534

RESUMO

Disabled-2 (Dab2) inhibits platelet aggregation by competing with fibrinogen for binding to the α(IIb) ß(3) integrin receptor, an interaction that is modulated by Dab2 binding to sulfatides at the outer leaflet of the platelet plasma membrane. The disaggregatory function of Dab2 has been mapped to its N-terminus phosphotyrosine-binding (N-PTB) domain. Our data show that the surface levels of P-selectin, a platelet transmembrane protein known to bind sulfatides and promote cell-cell interactions, are reduced by Dab2 N-PTB, an event that is reversed in the presence of a mutant form of the protein that is deficient in sulfatide but not in integrin binding. Importantly, Dab2 N-PTB, but not its sulfatide binding-deficient form, was able to prevent sulfatide-induced platelet aggregation when tested under haemodynamic conditions in microfluidic devices at flow rates with shear stress levels corresponding to those found in vein microcirculation. Moreover, the regulatory role of Dab2 N-PTB extends to platelet-leucocyte adhesion and aggregation events, suggesting a multi-target role for Dab2 in haemostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Sulfoglicoesfingolipídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Hemorreologia , Humanos , Leucócitos/fisiologia , Técnicas Analíticas Microfluídicas , Selectina-P/metabolismo , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Proteínas Supressoras de Tumor
18.
Front Cell Dev Biol ; 9: 643769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718385

RESUMO

Lysosomal degradation of ubiquitinated transmembrane protein receptors (cargo) relies on the function of Endosomal Sorting Complex Required for Transport (ESCRT) protein complexes. The ESCRT machinery is comprised of five unique oligomeric complexes with distinct functions. Target of Myb1 (TOM1) is an ESCRT protein involved in the initial steps of endosomal cargo sorting. To exert its function, TOM1 associates with ubiquitin moieties on the cargo via its VHS and GAT domains. Several ESCRT proteins, including TOLLIP, Endofin, and Hrs, have been reported to form a complex with TOM1 at early endosomal membrane surfaces, which may potentiate the role of TOM1 in cargo sorting. More recently, it was found that TOM1 is involved in other physiological processes, including autophagy, immune responses, and neuroinflammation, which crosstalk with its endosomal cargo sorting function. Alteration of TOM1 function has emerged as a phosphoinositide-dependent survival mechanism for bacterial infections and cancer progression. Based on current knowledge of TOM1-dependent cellular processes, this review illustrates how TOM1 functions in coordination with an array of protein partners under physiological and pathological scenarios.

19.
Biochim Biophys Acta Biomembr ; 1862(6): 183230, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126233

RESUMO

Changes in membrane curvature are required to control the function of subcellular compartments; malfunctions of such processes are associated with a wide range of human diseases. Membrane remodeling often depends upon the presence of phosphoinositides, which recruit protein effectors for a variety of cellular functions. Phafin2 is a phosphatidylinositol 3-phosphate (PtdIns3P)-binding effector involved in endosomal and lysosomal membrane-associated signaling. Both the Phafin2 PH and the FYVE domains bind PtdIns3P, although their redundant function in the protein is unclear. Through a combination of lipid-binding assays, we found that, unlike the FYVE domain, recognition of the PH domain to PtdIns3P requires a lipid bilayer. Using site-directed mutagenesis and truncation constructs, we discovered that the Phafin2 FYVE domain is constitutive for PtdIns3P binding, whereas PH domain binding to PtdIns3P is autoinhibited by a conserved C-terminal acidic motif. These findings suggest that binding of the Phafin2 PH domain to PtdIns3P in membrane compartments occurs through a highly regulated mechanism. Potential mechanisms are discussed throughout this report.


Assuntos
Motivos de Aminoácidos/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transporte Vesicular/química , Membrana Celular/ultraestrutura , Humanos , Bicamadas Lipídicas/metabolismo , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Ligação Proteica , Domínios Proteicos , Proteínas de Transporte Vesicular/metabolismo
20.
Sci Rep ; 10(1): 13520, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782308

RESUMO

Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin αIIbß3 receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin αIIbß3 receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Simulação por Computador , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Selectina-P/metabolismo , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA