Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Ther ; 31(9): 2681-2701, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340634

RESUMO

Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , MicroRNAs , Humanos , Animais , Camundongos , Influenza Humana/complicações , Influenza Humana/genética , Influenza Humana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ocludina/genética , Ocludina/metabolismo , Lesão Pulmonar/metabolismo , Junções Íntimas/metabolismo , Carga Viral , Vírus da Influenza A Subtipo H1N1/genética , Camundongos Endogâmicos C57BL , Antivirais
2.
Anesthesiology ; 138(4): 420-435, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571572

RESUMO

BACKGROUND: Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. METHODS: Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. RESULTS: At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. CONCLUSIONS: In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.


Assuntos
Produtos Biológicos , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Ratos , Masculino , Animais , Ratos Wistar , Taxa Respiratória , Molécula 1 de Adesão de Célula Vascular , Síndrome do Desconforto Respiratório/prevenção & controle , Pressão Positiva Contínua nas Vias Aéreas
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293511

RESUMO

Cutaneous fibrosis is one of the main features of systemic sclerosis (SSc). Recent findings correlated abnormal collagen V (Col V) deposition in dermis with skin thickening and disease activity in SSc. Considering that Col V is an important regulator of collagen fibrillogenesis, understanding the role of Col V in the first two years of the skin fibrosis in SSc (early SSc) can help to determine new targets for future treatments. In this study, we analyzed the morphological, ultrastructural and molecular features of α1(V) and α2(V) chains and the expression of their coding genes COL5A1 and COL5A2 in collagen fibrillogenesis in early-SSc. Skin biopsies were obtained from seven consecutive treatment-naïve patients with SSc-related fibrosis and four healthy controls. Our data showed increased α1(V) and α2(V) chain expression in the reticular dermis of early-SSc patients; however, immunofluorescence and ultrastructural immunogold staining determined a significant decreased expression of the α1(V) chain along the dermoepidermal junction in the papillary dermis from early-SSc-patients in relation to the control (12.77 ± 1.34 vs. 66.84 ± 3.36; p < 0.0001). The immunoblot confirmed the decreased expression of the α1(V) chain by the cutaneous fibroblasts of early-SSc, despite the increased COL5A1 and COL5A2 gene expression. In contrast, the α2(V) chain was overexpressed in the small vessels (63.18 ± 3.56 vs. 12.16 ± 0.81; p < 0.0001) and capillaries (60.88 ± 5.82 vs. 15.11 ± 3.80; p < 0.0001) in the reticular dermis of early-SSc patients. Furthermore, COLVA2 siRNA in SSc cutaneous fibroblasts resulted in a decreased α1(V) chain expression. These results highlight an intense decrease in the α1(V) chain along the dermoepidermal junction, suggesting an altered molecular histoarchitecture in the SSc papillary dermis, with a possible decrease in the expression of the α1(V)3 homotrimeric isoform, which could interfere with the thickening and cutaneous fibrosis related to SSc.


Assuntos
Derme , Escleroderma Sistêmico , Humanos , RNA Interferente Pequeno/metabolismo , Estrutura Molecular , Derme/metabolismo , Escleroderma Sistêmico/patologia , Fibrose , Colágeno/metabolismo , Pele/metabolismo , Fibroblastos/metabolismo
4.
Crit Care Med ; 49(1): 140-150, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060501

RESUMO

OBJECTIVES: We hypothesized that a time-controlled adaptive ventilation strategy would open and stabilize alveoli by controlling inspiratory and expiratory duration. Time-controlled adaptive ventilation was compared with volume-controlled ventilation at the same levels of mean airway pressure and positive end-release pressure (time-controlled adaptive ventilation)/positive end-expiratory pressure (volume-controlled ventilation) in a Pseudomonas aeruginosa-induced pneumonia model. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Twenty-one Wistar rats. INTERVENTIONS: Twenty-four hours after pneumonia induction, Wistar rats (n = 7) were ventilated with time-controlled adaptive ventilation (tidal volume = 8 mL/kg, airway pressure release ventilation for a Thigh = 0.75-0.85 s, release pressure (Plow) set at 0 cm H2O, and generating a positive end-release pressure = 1.6 cm H2O applied for Tlow = 0.11-0.14 s). The expiratory flow was terminated at 75% of the expiratory flow peak. An additional 14 animals were ventilated using volume-controlled ventilation, maintaining similar time-controlled adaptive ventilation levels of positive end-release pressure (positive end-expiratory pressure=1.6 cm H2O) and mean airway pressure = 10 cm H2O. Additional nonventilated animals (n = 7) were used for analysis of molecular biology markers. MEASUREMENTS AND MAIN RESULTS: After 1 hour of mechanical ventilation, the heterogeneity score, the expression of pro-inflammatory biomarkers interleukin-6 and cytokine-induced neutrophil chemoattractant-1 in lung tissue were significantly lower in the time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure groups (p = 0.008, p = 0.011, and p = 0.011, respectively). Epithelial cell integrity, measured by E-cadherin tissue expression, was higher in time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure (p = 0.004). Time-controlled adaptive ventilation animals had bacteremia counts lower than volume-controlled ventilation with similar mean airway pressure animals, while time-controlled adaptive ventilation and volume-controlled ventilation with similar positive end-release pressure animals had similar colony-forming unit counts. In addition, lung edema and cytokine-induced neutrophil chemoattractant-1 gene expression were more reduced in time-controlled adaptive ventilation than volume-controlled ventilation with similar positive end-release pressure groups. CONCLUSIONS: In the model of pneumonia used herein, at the same tidal volume and mean airway pressure, time-controlled adaptive ventilation, compared with volume-controlled ventilation, was associated with less lung damage and bacteremia and reduced gene expression of mediators associated with inflammation.


Assuntos
Pneumonia Bacteriana/terapia , Respiração Artificial/métodos , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
5.
Respir Res ; 22(1): 214, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330283

RESUMO

BACKGROUND: We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS: Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS: At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION: In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.


Assuntos
Coração/fisiopatologia , Rim/fisiopatologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Coração/efeitos dos fármacos , Infusões Intravenosas , Rim/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/terapia , Lactato de Ringer/administração & dosagem , Lactato de Ringer/toxicidade , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
6.
Anesthesiology ; 132(2): 307-320, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939846

RESUMO

BACKGROUND: Pressure-support ventilation may worsen lung damage due to increased dynamic transpulmonary driving pressure. The authors hypothesized that, at the same tidal volume (VT) and dynamic transpulmonary driving pressure, pressure-support and pressure-controlled ventilation would yield comparable lung damage in mild lung injury. METHODS: Male Wistar rats received endotoxin intratracheally and, after 24 h, were ventilated in pressure-support mode. Rats were then randomized to 2 h of pressure-controlled ventilation with VT, dynamic transpulmonary driving pressure, dynamic transpulmonary driving pressure, and inspiratory time similar to those of pressure-support ventilation. The primary outcome was the difference in dynamic transpulmonary driving pressure between pressure-support and pressure-controlled ventilation at similar VT; secondary outcomes were lung and diaphragm damage. RESULTS: At VT = 6 ml/kg, dynamic transpulmonary driving pressure was higher in pressure-support than pressure-controlled ventilation (12.0 ± 2.2 vs. 8.0 ± 1.8 cm H2O), whereas static transpulmonary driving pressure did not differ (6.7 ± 0.6 vs. 7.0 ± 0.3 cm H2O). Diffuse alveolar damage score and gene expression of markers associated with lung inflammation (interleukin-6), alveolar-stretch (amphiregulin), epithelial cell damage (club cell protein 16), and fibrogenesis (metalloproteinase-9 and type III procollagen), as well as diaphragm inflammation (tumor necrosis factor-α) and proteolysis (muscle RING-finger-1) were comparable between groups. At similar dynamic transpulmonary driving pressure, as well as dynamic transpulmonary driving pressure and inspiratory time, pressure-controlled ventilation increased VT, static transpulmonary driving pressure, diffuse alveolar damage score, and gene expression of markers of lung inflammation, alveolar stretch, fibrogenesis, diaphragm inflammation, and proteolysis compared to pressure-support ventilation. CONCLUSIONS: In the mild lung injury model use herein, at the same VT, pressure-support compared to pressure-controlled ventilation did not affect biologic markers. However, pressure-support ventilation was associated with a major difference between static and dynamic transpulmonary driving pressure; when the same dynamic transpulmonary driving pressure and inspiratory time were used for pressure-controlled ventilation, greater lung and diaphragm injury occurred compared to pressure-support ventilation.


Assuntos
Diafragma/lesões , Diafragma/fisiopatologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Respiração com Pressão Positiva/efeitos adversos , Respiração com Pressão Positiva/métodos , Animais , Masculino , Respiração com Pressão Positiva/normas , Ratos , Ratos Wistar , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia
7.
Pathobiology ; 87(6): 356-366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33099553

RESUMO

Several studies have reported the pathophysiologic and molecular mechanisms responsible for pulmonary arterial hypertension (PAH). However, the in situ evidence of collagen V (Col V) and interleukin-17 (IL-17)/interleukin-6 (IL-6) activation in PAH has not been fully elucidated. We analyzed the effects of collagen I (Col I), Col V, IL-6, and IL-17 on vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Twenty male Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, whereas the control group (CTRL) received saline. On day 21, the pulmonary blood pressure (PAP) and right ventricular systolic pressure (RVSP) were determined. Lung histology (smooth muscle cell proliferation [α-smooth muscle actin; α-SMA] and periadventitial fibrosis), immunofluorescence (Col I, Col V, and α-SMA), immunohistochemistry (IL-6, IL-17, and transforming growth factor-beta [TGF-ß]), and transmission electron microscopy to detect fibronexus were evaluated. The RVSP (40 ± 2 vs. 24 ± 1 mm Hg, respectively; p < 0.0001), right ventricle hypertrophy index (65 ± 9 and 25 ± 5%, respectively; p < 0.0001), vascular periadventitial Col I and Col V, smooth muscle cell α-SMA+, fibronexus, IL-6, IL-17, and TGF-ß were higher in the MCT group than in the CTRL group. In conclusion, our findings indicate in situ evidence of Col V and IL-6/IL-17 activation in vascular remodeling and suggest that increase of Col V may yield potential therapeutic targets for treating patients with PAH.


Assuntos
Colágeno/genética , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/fisiopatologia , Interleucina-17/imunologia , Interleucina-6/imunologia , Remodelação Vascular/imunologia , Animais , Colágeno/classificação , Colágeno/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Interleucina-17/genética , Interleucina-6/genética , Masculino , Monocrotalina/administração & dosagem , Ratos , Ratos Wistar
8.
Pathobiology ; 87(3): 208-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369821

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly lethal disease comprising a heterogeneous group of tumors with challenging to predict biological behavior. The diagnosis is complex, and the histologic classification includes 2 major subtypes of MPM: epithelioid (∼60% of cases) and sarcomatous (∼20%). Its identification depends upon pathological investigation supported by clinical and radiological evidence and more recently ancillary molecular testing. Treatment options are currently limited, with no known targeted therapies available. OBJECTIVES: To elucidate the mutation profile of driver tumor suppressor and oncogenic genes in a cohort of Brazilian patients. METHODS: We sequenced 16 driver genes in a series of 43 Brazilian malignant mesothelioma (MM) patients from 3 distinct Brazilian centers. Genomic DNA was extracted from formalin-fixed paraffin-embedded tumor tissue blocks, and the TERT promoter region was amplified by PCR followed by direct capillary sequencing. The Illumina TruSight Tumor 15 was used to evaluate 250 amplicons from 15 genes associated with solid tumors (AKT1, GNA11, NRAS, BRAF, GNAQ, PDGFRA, EGFR, KIT, PIK3CA, ERBB2, KRAS, RET, FOXL2, MET,and TP53). Library preparation with the TruSight Tumor 15 was performed before sequencing at the MiSeq platform. Data analysis was performed using Sophia DDM software. RESULTS: Out of 43 MPM patients, 38 (88.4%) were epithelioid subtype and 5 (11.6%) were sarcomatoid histotype. Asbestos exposure was present in 15 (39.5%) patients with epithelioid MPM and 3 (60%) patients with sarcomatoid MPM. We found a TERT promoter mutation in 11.6% of MM, and the c.-146C>T mutation was the most common event. The next-generation sequencing was successful in 33 cases. A total of 18 samples showed at least 1 pathogenic, with a median of 1.8 variants, ranging from 1 to 6. The most mutated genes were TP53 and ERBB2 with 7 variants each, followed by NRAS BRAF, PI3KCA, EGFR and PDGFRA with 2 variants each. KIT, AKT1, and FOXL2 genes exhibited 1 variant each. Interestingly, 2 variants observed in the PDGFRA gene are classic imatinib-sensitive therapy. CONCLUSIONS: We concluded that Brazilian MPM harbor mutation in classic tumor suppressor and oncogenic genes, which might help in the guidance of personalized treatment of MPM.


Assuntos
Genes Supressores de Tumor , Neoplasias Pulmonares/genética , Mesotelioma Maligno/genética , Mutação , Oncogenes , Carcinogênese , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Inclusão em Parafina
9.
Respir Res ; 20(1): 155, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311539

RESUMO

BACKGROUND: Conflicting data have reported beneficial effects of crystalloids, hyper-oncotic albumin (20%ALB), and iso-oncotic albumin (5%ALB) in critically ill patients. Although hyper-oncotic albumin may minimize lung injury, recent studies have shown that human albumin may lead to kidney damage proportional to albumin concentration. In this context, we compared the effects of Ringer's lactate (RL), 20%ALB, and 5%ALB, all titrated according to similar hemodynamic goals, on pulmonary function, lung and kidney histology, and molecular biology in experimental acute lung injury (ALI). METHODS: Male Wistar rats received Escherichia coli lipopolysaccharide intratracheally (n = 24) to induce ALI. After 24 h, animals were anesthetized and randomly assigned to receive RL, 20%ALB, or 5%ALB (n = 6/group) to maintain hemodynamic stability (distensibility index of inferior vena cava < 25%, mean arterial pressure > 65 mmHg). Rats were then mechanically ventilated for 6 h. Six animals, which received neither ventilation nor fluids (NV), were used for molecular biology analyses. RESULTS: The total fluid volume infused was higher in RL compared to 5%ALB and 20%ALB (median [interquartile range], 10.8[8.2-33.2] vs. 4.8[3.6-7.7] and 4.3[3.9-6.6] mL, respectively; p = 0.02 and p = 0.003). B-line counts on lung ultrasound (p < 0.0001 and p = 0.0002) and serum lactate levels (p = 0.01 and p = 0.01) were higher in RL than 5%ALB and 20%ALB. Diffuse alveolar damage score was lower in 5%ALB (10.5[8.5-12]) and 20%ALB (10.5[8.5-14]) than RL (16.5[12.5-20.5]) (p < 0.05 and p = 0.03, respectively), while acute kidney injury score was lower in 5%ALB (9.5[6.5-10]) than 20%ALB (18[15-28.5], p = 0.0006) and RL (16 [15-19], p = 0.04). In lung tissue, mRNA expression of interleukin (IL)-6 was higher in RL (59.1[10.4-129.3]) than in 5%ALB (27.0[7.8-49.7], p = 0.04) or 20%ALB (3.7[7.8-49.7], p = 0.03), and IL-6 protein levels were higher in RL than 5%ALB and 20%ALB (p = 0.026 and p = 0.021, respectively). In kidney tissue, mRNA expression and protein levels of kidney injury molecule (KIM)-1 were lower in 5%ALB than RL and 20%ALB, while nephronectin expression increased (p = 0.01 and p = 0.01), respectively. CONCLUSIONS: In a rat model of ALI, both iso-oncotic and hyper-oncotic albumin solutions were associated with less lung injury compared to Ringer's lactate. However, hyper-oncotic albumin resulted in greater kidney damage than iso-oncotic albumin. This experimental study is a step towards future clinical designs.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Albuminas/toxicidade , Soluções Cristaloides/toxicidade , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
10.
Anesthesiology ; 130(5): 767-777, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870161

RESUMO

BACKGROUND: This study hypothesized that, in experimental mild acute respiratory distress syndrome, lung damage caused by high tidal volume (VT) could be attenuated if VT increased slowly enough to progressively reduce mechanical heterogeneity and to allow the epithelial and endothelial cells, as well as the extracellular matrix of the lung to adapt. For this purpose, different strategies of approaching maximal VT were tested. METHODS: Sixty-four Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomly assigned to receive mechanical ventilation with VT = 6 ml/kg for 2 h (control); VT = 6 ml/kg during hour 1 followed by an abrupt increase to VT = 22 ml/kg during hour 2 (no adaptation time); VT = 6 ml/kg during the first 30 min followed by a gradual VT increase up to 22 ml/kg for 30 min, then constant VT = 22 ml/kg during hour 2 (shorter adaptation time); and a more gradual VT increase, from 6 to 22 ml/kg during hour 1 followed by VT = 22 ml/kg during hour 2 (longer adaptation time). All animals were ventilated with positive end-expiratory pressure of 3 cm H2O. Nonventilated animals were used for molecular biology analysis. RESULTS: At 2 h, diffuse alveolar damage score and heterogeneity index were greater in the longer adaptation time group than in the control and shorter adaptation time animals. Gene expression of interleukin-6 favored the shorter (median [interquartile range], 12.4 [9.1-17.8]) adaptation time compared with longer (76.7 [20.8 to 95.4]; P = 0.02) and no adaptation (65.5 [18.1 to 129.4]) time (P = 0.02) strategies. Amphiregulin, metalloproteinase-9, club cell secretory protein-16, and syndecan showed similar behavior. CONCLUSIONS: In experimental mild acute respiratory distress syndrome, lung damage in the shorter adaptation time group compared with the no adaptation time group was attenuated in a time-dependent fashion by preemptive adaptation of the alveolar epithelial cells and extracellular matrix. Extending the adaptation period increased cumulative power and did not prevent lung damage, because it may have exposed animals to injurious strain earlier and for a longer time, thereby negating any adaptive benefit.


Assuntos
Lesão Pulmonar/prevenção & controle , Volume de Ventilação Pulmonar , Adaptação Fisiológica , Animais , Interleucina-6/genética , Masculino , Respiração com Pressão Positiva , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/complicações , Volume de Ventilação Pulmonar/fisiologia
11.
Crit Care Med ; 46(6): e609-e617, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29485489

RESUMO

OBJECTIVES: To compare a time-controlled adaptive ventilation strategy, set in airway pressure release ventilation mode, versus a protective mechanical ventilation strategy in pulmonary and extrapulmonary acute respiratory distress syndrome with similar mechanical impairment. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Forty-two Wistar rats. INTERVENTIONS: Pulmonary acute respiratory distress syndrome and extrapulmonary acute respiratory distress syndrome were induced by instillation of Escherichia coli lipopolysaccharide intratracheally or intraperitoneally, respectively. After 24 hours, animals were randomly assigned to receive 1 hour of volume-controlled ventilation (n = 7/etiology) or time-controlled adaptive ventilation (n = 7/etiology) (tidal volume = 8 mL/kg). Time-controlled adaptive ventilation consisted of the application of continuous positive airway pressure 2 cm H2O higher than baseline respiratory system peak pressure for a time (Thigh) of 0.75-0.85 seconds. The release pressure (Plow = 0 cm H2O) was applied for a time (Tlow) of 0.11-0.18 seconds. Tlow was set to target an end-expiratory flow to peak expiratory flow ratio of 75%. Nonventilated animals (n = 7/etiology) were used for Diffuse Alveolar Damage and molecular biology markers analyses. MEASUREMENT AND MAIN RESULTS: Time-controlled adaptive ventilation increased mean respiratory system pressure regardless of acute respiratory distress syndrome etiology. The Diffuse Alveolar Damage score was lower in time-controlled adaptive ventilation compared with volume-controlled ventilation in pulmonary acute respiratory distress syndrome and lower in time-controlled adaptive ventilation than nonventilated in extrapulmonary acute respiratory distress syndrome. In pulmonary acute respiratory distress syndrome, volume-controlled ventilation, but not time-controlled adaptive ventilation, increased the expression of amphiregulin, vascular cell adhesion molecule-1, and metalloproteinase-9. Collagen density was higher, whereas expression of decorin was lower in time-controlled adaptive ventilation than nonventilated, independent of acute respiratory distress syndrome etiology. In pulmonary acute respiratory distress syndrome, but not in extrapulmonary acute respiratory distress syndrome, time-controlled adaptive ventilation increased syndecan expression. CONCLUSION: In pulmonary acute respiratory distress syndrome, time-controlled adaptive ventilation led to more pronounced beneficial effects on expression of biomarkers related to overdistension and extracellular matrix homeostasis.


Assuntos
Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Animais , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Resultado do Tratamento
12.
Crit Care Med ; 46(2): e132-e140, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29116998

RESUMO

OBJECTIVES: Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. DESIGN: Animal study and primary cell culture. SETTING: Laboratory investigation. SUBJECTS: Seventy-five Wistar rats. INTERVENTIONS: Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). MEASUREMENTS AND MAIN RESULTS: Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1ß, keratinocyte-derived chemokine, transforming growth factor-ß, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. CONCLUSIONS: Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Nefropatias/etiologia , Nefropatias/cirurgia , Hepatopatias/etiologia , Hepatopatias/cirurgia , Pneumopatias/etiologia , Pneumopatias/cirurgia , Pulmão/citologia , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
13.
Glycoconj J ; 35(2): 233-242, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29502190

RESUMO

Matrix proteoglycans (PGs) have shown promise as biomarker in malignancies. We employed agarose gel eletrophoresis, quantitative real- time reverse transcription-polymerase chain reaction and immunohistochemistry to evaluate the content of sulfated glicosaminoglycans (chondroitin sulfate and heparan sulfate) and expression of PG (biglycan, glypican, perlecan, syndecan e versican) in patient-matched normal and tumor tissues obtained from resected specimens of lung cancer. A significant increase of heparan sulfate (HS) and chondroitin sulfate (CS) concentrations was found in tumor tissue samples when compared to normal lung tissue samples. HS was also significantly increased in adenocarcinomas compared to squamous cell carcinomas. PG gene expression, with exception of syndecan, were significantly decreased in tumor tissue compared to normal lung, coinciding with significant decrease of PG protein levels in tumor cells and stroma compared to normal lung tissue (Kappa coefficient 0.41, 0.42 and 0,28, respectively). Women patients (p = 0.02), non smokers (p = 0.05), T stage (p = 0.009), N stage (p = 0.03) and adenocarcinoma (p = 0.05) were associated with improved overall survival (OS). Patients presenting tumors with low concentration of sulfated GAG and high PGs levels presented better OS compared to patients with high concentration of sulfated GAG and low expression of PGs. Cox regression model controlled by gender, tobacco history and histological type, showed that patients with high perlecan and versican expression in tumor presented respectively high probability of life (ß risk 11.64; 1.27 to 15.90) and low risk of death (ß risk 0.11; 0.02-0.51). The combined approach suggest matrix (PGs) as biomarkers in lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteoglicanas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade
14.
Anesthesiology ; 128(6): 1193-1206, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29489470

RESUMO

BACKGROUND: The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). METHODS: Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (ΔP,L/E,L) × RR (ΔP,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. RESULTS: Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. CONCLUSIONS: In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.


Assuntos
Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/fisiologia , Mucosa Respiratória/fisiopatologia , Volume de Ventilação Pulmonar/fisiologia , Animais , Distribuição Aleatória , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia
15.
Crit Care ; 22(1): 249, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290827

RESUMO

BACKGROUND: Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. METHODS: Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. RESULTS: Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. CONCLUSIONS: In rats, focal ischemic stroke is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.


Assuntos
Lesão Pulmonar/etiologia , Macrófagos Alveolares/patologia , Fagócitos/patologia , Acidente Vascular Cerebral/complicações , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Terapia de Imunossupressão/efeitos adversos , Interleucina-6/análise , Interleucina-6/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , RNA Mensageiro/análise , RNA Mensageiro/sangue , Ratos , Ratos Wistar/imunologia , Ratos Wistar/metabolismo , Estatísticas não Paramétricas , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
16.
Pathophysiology ; 25(4): 373-379, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30030016

RESUMO

Cardiac remodeling (CR) is a structural change of the heart due to chronic hemodynamic overload related to changes in both myocyte and extracellular matrix (ECM). We investigated that the imbalance of collagen V promotes cardiomyocyte apoptosis that contributes to heart failure and cell death. Aortic stenosis was induced surgically and male Wistar rats were randomized to 18 weeks (Sham 18 w, n = 12; AoS 18 w, n = 12) and severe of heart failure (Sham HF, n = 12; AoS HF, n = 12) groups. Functional and structural echocardiogram, immunohistochemistry for Ki-67, TUNEL assay and Immunofluorescence for collagen were performed. Our main results were: (1) Progressive reduction of cardiac functional capacity due to cardiac remodeling with decreased eject fraction in heart failure; (2) Imbalance of collagen deposition with increased, crowded and irregular collagen I in situ expression; (3) Dysregulation of dynamic control of collagen fibers with exposed epitopes of collagen V; (4) Additional apoptosis that are dependent to cardiac injury. The collagen V expression in cardiac remodeling is for the first time described and may be related to additional apoptosis and autoimmune response. Our findings suggest a critical role of collagen V in cardiac remodeling to modulate and promote heart failure and death.

17.
Homeopathy ; 107(3): 172-180, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29768636

RESUMO

INTRODUCTION: There are two critical pillars of homeopathy that contrast with the dominant scientific approach: the similitude principle and the potentization of serial dilutions. Three main hypotheses about the mechanisms of action are in discussion: nanobubbles-related hormesis; vehicle-related electric resonance; and quantum non-locality. OBJECTIVES: The aim of this paper is to review and discuss some key points of such properties: the imprint of supramolecular structures based on the nanoparticle-allostatic, cross-adaptation-sensitization (NPCAS) model; the theory of non-molecular electromagnetic transfer of information, based on the coherent water domains model, and relying (like the NPCAS model) on the idea of local interactions; and the hypothesis of quantum entanglement, based on the concept of non-locality. RESULTS AND DISCUSSION: The nanoparticles hypothesis has been considered since 2010, after the demonstration of suspended metal nanoparticles even in very highly diluted remedies: their actual action on biological structures is still under scrutiny. The second hypothesis considers the idea of electric resonance mechanisms between living systems (including intracellular water) and homeopathic medicines: recent findings about potency-related physical properties corroborate it. Finally, quantum theory of 'non-local' phenomena inspires the idea of an 'entanglement' process among patient, practitioner and the remedy: that quantic phenomena could occur in supra-atomic structures remains speculative however. CONCLUSION: Further studies are needed to ascertain whether and which of these hypotheses may be related to potential cellular effects of homeopathic preparations, such as organization of metabolic pathways or selective gene expression.


Assuntos
Homeopatia/métodos , Materia Medica/química , Nanopartículas/química , Extratos Vegetais/química , Alostase , Humanos , Modelos Teóricos , Teoria Quântica
18.
Respir Res ; 18(1): 185, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100513

RESUMO

BACKGROUND: Emphysema is a progressive disease characterized by irreversible airspace enlargement followed by a decline in lung function. It also causes extrapulmonary effects, such as loss of body mass and cor pulmonale, which are associated with shorter survival and worse clinical outcomes. Ghrelin, a growth-hormone secretagogue, stimulates muscle anabolism, has anti-inflammatory effects, promotes vasodilation, and improves cardiac performance. Therefore, we hypothesized that ghrelin might reduce lung inflammation and remodelling as well as improve lung mechanics and cardiac function in experimental emphysema. METHODS: Forty female C57BL/6 mice were randomly assigned into two main groups: control (C) and emphysema (ELA). In the ELA group (n=20), animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. C animals (n=20) received saline alone (50 µL) using the same protocol. Two weeks after the last instillation of saline or PPE, C and ELA animals received ghrelin or saline (n=10/group) intraperitoneally (i.p.) daily, during 3 weeks. Dual-energy X-ray absorptiometry (DEXA), echocardiography, lung mechanics, histology, and molecular biology were analysed. RESULTS: In elastase-induced emphysema, ghrelin treatment decreased alveolar hyperinflation and mean linear intercept, neutrophil infiltration, and collagen fibre content in the alveolar septa and pulmonary vessel wall; increased elastic fibre content; reduced M1-macrophage populations and increased M2 polarization; decreased levels of keratinocyte-derived chemokine (KC, a mouse analogue of interleukin-8), tumour necrosis factor-α, and transforming growth factor-ß, but increased interleukin-10 in lung tissue; augmented static lung elastance; reduced arterial pulmonary hypertension and right ventricular hypertrophy on echocardiography; and increased lean mass. CONCLUSION: In the elastase-induced emphysema model used herein, ghrelin not only reduced lung damage but also improved cardiac function and increased lean mass. These findings should prompt further studies to evaluate ghrelin as a potential therapy for emphysema.


Assuntos
Grelina/uso terapêutico , Hipertrofia Ventricular Direita/tratamento farmacológico , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/tratamento farmacológico , Animais , Feminino , Grelina/farmacologia , Hipertrofia Ventricular Direita/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/diagnóstico por imagem , Suínos
19.
Anesth Analg ; 125(4): 1364-1374, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759484

RESUMO

BACKGROUND: Intraoperative mechanical ventilation may yield lung injury. To date, there is no consensus regarding the best ventilator strategy for abdominal surgery. We aimed to investigate the impact of the mechanical ventilation strategies used in 2 recent trials (Intraoperative Protective Ventilation [IMPROVE] trial and Protective Ventilation using High versus Low PEEP [PROVHILO] trial) on driving pressure (ΔPRS), mechanical power, and lung damage in a model of open abdominal surgery. METHODS: Thirty-five Wistar rats were used, of which 28 were anesthetized, and a laparotomy was performed with standardized bowel manipulation. Postoperatively, animals (n = 7/group) were randomly assigned to 4 hours of ventilation with: (1) tidal volume (VT) = 7 mL/kg and positive end-expiratory pressure (PEEP) = 1 cm H2O without recruitment maneuvers (RMs) (low VT/low PEEP/RM-), mimicking the low-VT/low-PEEP strategy of PROVHILO; (2) VT = 7 mL/kg and PEEP = 3 cm H2O with RMs before laparotomy and hourly thereafter (low VT/moderate PEEP/4 RM+), mimicking the protective ventilation strategy of IMPROVE; (3) VT = 7 mL/kg and PEEP = 6 cm H2O with RMs only before laparotomy (low VT/high PEEP/1 RM+), mimicking the strategy used after intubation and before extubation in PROVHILO; or (4) VT = 14 mL/kg and PEEP = 1 cm H2O without RMs (high VT/low PEEP/RM-), mimicking conventional ventilation used in IMPROVE. Seven rats were not tracheotomized, operated, or mechanically ventilated, and constituted the healthy nonoperated and nonventilated controls. RESULTS: Low VT/moderate PEEP/4 RM+ and low VT/high PEEP/1 RM+, compared to low VT/low PEEP/RM- and high VT/low PEEP/RM-, resulted in lower ΔPRS (7.1 ± 0.8 and 10.2 ± 2.1 cm H2O vs 13.9 ± 0.9 and 16.9 ± 0.8 cm H2O, respectively; P< .001) and less mechanical power (63 ± 7 and 79 ± 20 J/min vs 110 ± 10 and 120 ± 20 J/min, respectively; P = .007). Low VT/high PEEP/1 RM+ was associated with less alveolar collapse than low VT/low PEEP/RM- (P = .03). E-cadherin expression was higher in low VT/moderate PEEP/4 RM+ than in low VT/low PEEP/RM- (P = .013) or high VT/low PEEP/RM- (P = .014). The extent of alveolar collapse, E-cadherin expression, and tumor necrosis factor-alpha correlated with ΔPRS (r = 0.54 [P = .02], r = -0.48 [P = .05], and r = 0.59 [P = .09], respectively) and mechanical power (r = 0.57 [P = .02], r = -0.54 [P = .02], and r = 0.48 [P = .04], respectively). CONCLUSIONS: In this model of open abdominal surgery based on the mechanical ventilation strategies used in IMPROVE and PROVHILO trials, lower mechanical power and its surrogate ΔPRS were associated with reduced lung damage.


Assuntos
Laparotomia/métodos , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Abdome/fisiologia , Abdome/cirurgia , Animais , Biomarcadores , Distribuição Aleatória , Ratos , Ratos Wistar , Respiração Artificial/métodos
20.
Cell Physiol Biochem ; 38(2): 821-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26905925

RESUMO

BACKGROUND/AIMS: Exogenous surfactant has been proposed as adjunctive therapy for acute respiratory distress syndrome (ARDS), but it is inactivated by different factors present in the alveolar space. We hypothesized that co-administration of LASSBio596, a molecule with significant anti-inflammatory properties, and exogenous surfactant could reduce lung inflammation, thus enabling the surfactant to reduce edema and improve lung function, in experimental ARDS. METHODS: ARDS was induced by cecal ligation and puncture surgery in BALB/c mice. A sham-operated group was used as control (CTRL). After surgery (6 hours), CTRL and ARDS animals were assigned to receive: (1) sterile saline solution; (2) LASSBio596; (3) exogenous surfactant or (4) LASSBio596 plus exogenous surfactant (n = 22/group). RESULTS: Regardless of exogenous surfactant administration, LASSBio596 improved survival rate and reduced collagen fiber content, total number of cells and neutrophils in PLF and blood, cell apoptosis, protein content in BALF, and urea and creatinine levels. LASSBio596 plus surfactant yielded all of the aforementioned beneficial effects, as well as increased BALF lipid content and reduced surface tension. CONCLUSION: LASSBio596 exhibited major anti-inflammatory and anti-fibrogenic effects in experimental sepsis-induced ARDS. Its association with surfactant may provide further advantages, potentially by reducing surface tension.


Assuntos
Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Pulmão/efeitos dos fármacos , Ácidos Ftálicos/uso terapêutico , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Tensão Superficial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA