Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mycotoxin Res ; 40(1): 203-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236484

RESUMO

Thirty-two varieties of common and durum wheat, hordeum, barley, and tritordeum collected over two harvesting years (2020 and 2021) were investigated for the presence of multiple Fusarium-related mycotoxins in asymptomatic plants. DON, 3-AcDON, 15-AcDON, T-2, HT-2, and ZEN together with the emerging mycotoxin ENN B and the major modified form of DON, namely DON3Glc, were quantified by means of UHPLC-MS/MS. Overall, DON and ENN B were the most frequently detected mycotoxins, albeit large inter-year variability was observed and related to different climate and weather conditions. Straws had higher mycotoxin contents than kernels and regarding DON occurrence tritordeum was found to be the most contaminated group on average for both harvesting years, while barley was the less contaminated one. Emerging mycotoxin ENN B showed comparable contents in kernels compared to straw, with a ratio close to 1 for tritordeum and barley. Regarding the occurrence of the other evaluated mycotoxins, T-2 and HT-2 toxins have been spotted in a few tritordeum samples, while ZEN has been frequently found only in straw from the harvesting year 2020. The data collected confirms the occurrence of multiple Fusarium mycotoxins in straws also from asymptomatic plants, highlighting concerns related to feed safety and animal health. The susceptibility of Tritordeum, hereby reported for the first time, suggests that careful measures in terms of monitoring, breeding, and cultural choices should be applied when dealing with his emerging crop.


Assuntos
Fusarium , Hordeum , Micotoxinas , Tricotecenos , Animais , Micotoxinas/análise , Triticum , Tricotecenos/análise , Espectrometria de Massas em Tandem , Grão Comestível/química , Contaminação de Alimentos/análise
2.
Front Plant Sci ; 14: 1240313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023856

RESUMO

Maize cropping systems need to be re-designed, within a sustainable intensification context, by focusing on the application of high-use efficiency crop practices, such as those that are able to enhance an early plant vigor in the first critical growth stages; such practices could lead to significant agronomic and yield benefits. The aim of this study has been to evaluate the effects of the cultivation of hybrids with superior early vigor, of the distribution of starter fertilizers at sowing, and of the seed application of biostimulants on promoting plant growth and grain yield in full factorial experiments carried out in both a growth chamber and in open fields. The greatest benefits, in terms of plant growth enhancement (plant height, biomass, leaf area) and cold stress mitigation, were detected for the starter fertilization, followed by the use of an early vigor hybrid and a biostimulant seed treatment. The starter fertilization and the early vigor hybrid led to earlier flowering dates, that is, of 2.1 and 2.8 days, respectively, and significantly reduced grain moisture at harvest. Moreover, the early vigor hybrid, the starter NP fertilization, and the biostimulant treatment increased grain yield by 8.5%, 6.0%, and 5.1%, respectively, compared to the standard hybrid and the untreated controls. The combination of all the considered factors resulted in the maximum benefits, compared to the control cropping system, with an increase in the plant growth of 124%, a reduction of the sowing-flowering period of 5 days, and a gain in grain yield of 14%. When choosing the most suitable crop practice, the diversity of each cropping system should be considered, according to the pedo-climatic conditions, the agronomic background, the yield potential, and the supply chain requirements.

3.
Front Plant Sci ; 14: 1240310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023909

RESUMO

The sustainable intensification of maize-based systems may reduce greenhouse-gas emissions and the excessive use of non-renewable inputs. Considering the key role that the microbiological fertility has on crop growth and resilience, it is worth of interest studying the role of cropping system on the rhizosphere bacterial communities, that affect soil health and biological soil fertility. In this work we monitored and characterized the diversity and composition of native rhizosphere bacterial communities during the early growth phases of two maize genotypes of different early vigor, using a nitrogen (N)-phosphorus (P) starter fertilization and a biostimulant seed treatment, in a growth chamber experiment, by polymerase chain reaction-denaturing gradient gel electrophoresis of partial 16S rRNA gene and amplicon sequencing. Cluster analyses showed that the biostimulant treatment affected the rhizosphere bacterial microbiota of the ordinary hybrid more than that of the early vigor, both at plant emergence and at the 5-leaf stage. Moreover, the diversity indices calculated from the community profiles, revealed significant effects of NP fertilization on richness and the estimated effective number of species (H2) in both maize genotypes, while the biostimulant had a positive effect on plant growth promoting community of the ordinary hybrid, both at the plant emergence and at the fifth leaf stage. Our data showed that maize genotype was the major factor shaping rhizosphere bacterial community composition suggesting that the root system of the two maize hybrids recruited a different microbiota. Moreover, for the first time, we identified at the species and genus level the predominant native bacteria associated with two maize hybrids differing for vigor. These results pave the way for further studies to be performed on the effects of cropping system and specific crop practices, considering also the application of biostimulants, on beneficial rhizosphere microorganisms.

4.
Front Plant Sci ; 14: 1130543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235035

RESUMO

Rye is a secondary crop that is characterized by a higher tolerance to climatically less favorable conditions than other cereal species. For this reason, rye was historically used as a fundamental raw material for bread production and as a supply of straw in northern parts of Europe as well as in mountain environments, such as Alpine valleys, where locally adapted landraces have continued to be cultivated over the years. In this study, rye landraces collected in different valleys in the Northwest Italian Alps have been selected as the most genetically isolated within their geographical contexts and cultivated in two different marginal Alpine environments. The traits concerning their agronomy, mycotoxin contamination, bioactive content, as well as their technological and baking quality were assessed to characterize and compare rye landraces with commercial wheat and rye cultivars. Rye cultivars showed the same grain yield level as wheat in both environments. Only the genotype selected from the Maira Valley was characterized by tall and thin culms and a proneness to lodging, thereby resulting in a lower yield capacity. Among the rye cultivars, the hybrid one presented the highest yield potential, but also the highest susceptibility to the occurrence of ergot sclerotia. However, the rye cultivars, especially the landraces, were characterized by higher concentrations of minerals, soluble fibers, and soluble phenolic acids, and thus both their flours and breads had superior antioxidant properties. A 40% substitution of refined wheat flour with whole-grain rye flour led to a higher dough water absorption and a lower stability, thereby resulting in lower loaf volumes and darker products. Agronomically and qualitatively speaking, the rye landraces diverged significantly from the conventional rye cultivars, thus reflecting their genetic distinctiveness. The landrace from the Maira Valley shared a high content in phenolic acids and good antioxidant properties with the one from the Susa Valley and, when combined with wheat flour, turned out to be the most suitable for bread making. Overall, the results have highlighted the suitability of reintroducing historic rye supply chains, based on the cultivation of local landraces in marginal environments and the production of value-added bakery goods.

5.
Plants (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834778

RESUMO

Rye (Secale cereale L.) has been at the basis of agriculture for centuries in most mountainous and northern areas of Eurasia, because it is more resistant than other cereals to low temperatures and poor soils. Rye deserves to be re-evaluated as a source of "environmentally resilient" genes in the future as well, and particularly in a perspective to grow cereals able to withstand global warming. According to recent studies, modern rye varieties have a relatively narrow genetic pool, a condition that is worsening in the most recent breeding processes. The preservation of local landraces as unique sources of genetic diversity has therefore become important, in order to preserve the genetic heritage of rye. In this study, genetic diversity of rye landraces collected in a sector of the Italian Alps particularly suited to traditional agriculture was investigated using the ddRADseq technique. A few landraces still managed with family farming turned out to be genetically distant from the commercial varieties currently in use, highlighting that the phenomenon of homogenization of the local genetic pool can be still circumvented. Ex situ conservation of genetically divergent landraces is a valid tool to avoid the dissipation of an as yet unexplored genetic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA