Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Sci Food Agric ; 104(4): 1884-1896, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009309

RESUMO

Dry-fractionated protein concentrates are gaining attention because they are produced using a versatile and sustainable technology, which can be applied to a wide range of plant material. To facilitate their utilization in new product development, it is crucial to obtain a comprehensive overview of their techno-functional properties. The present review aims to examine the techno-functional properties of dry-fractionated protein concentrates and describe their primary applications in food products, considering the published works in the last decade. The techno-functional properties of proteins, including water absorption capacity, emulsifying and foaming properties, gelling ability or protein solubility, are relevant factors to consider during food formulation. However, these properties are significantly influenced by the extraction technology, the type of protein and its characteristics. Overall, dry-fractionated proteins are characterized by high protein solubility, high foaming ability and foam stability, and high gelling ability. Such properties have been exploited in the development of food, such as bakery products and pasta, with the aim of increasing the protein content and enhancing the nutritional value. Additionally, innovative foods with distinctive textural and nutritional characteristics, such as meat and dairy analogues, have been developed by using dry-fractionated proteins. The results indicate that the study of these ingredients still needs to be improved, including their application with a broader range of plant materials. Nevertheless, this review could represent an initial step to obtaining an overview of the techno-functional properties of dry-fractionated proteins, facilitating their use in foods. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Alimentos , Proteínas de Plantas , Proteínas de Plantas/química , Fenômenos Químicos , Solubilidade
2.
J Sci Food Agric ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441534

RESUMO

BACKGROUND: trans-Resveratrol (TR) is a well-known phytochemical compound with important biological properties. It can be recovered from agri-food by-products or wastes, such as vine shoots. Once recovered, its concentration should be measured, possibly in a green, non-destructive, and efficient manner. With these premises, this work aimed to explore the feasibility of excitation-emission fluorescence spectroscopy combined with chemometrics for the analysis of TR in raw extracts obtained from vine shoots. A total of 75 extracts were produced and analyzed by ultra-performance liquid chromatography method with diode array detection (UPLC-DAD) and spectrofluorimetry. Then, the feasibility of two calibration strategies for TR quantitation was assessed - a parallel factor analysis (PARAFAC)-based calibration and the N-way partial least squares (NPLS) regression. RESULTS: The extracts showed variable TR content, the excitation/emission maxima of which were at around 305/390 nm, respectively. The best PARAFAC-based calibration allowed a root mean square error of prediction (RMSEP) of 22.57 mg L-1 , and a relative prediction deviation (RPD) of 2.91 to be obtained but a large number of PARAFAC components should be considered to improve the predictions. The results of the NPLS regression were slightly better, with a RMSEP of 19.47 mg L-1 , and an RPD of 3.33 in the best case. CONCLUSION: Fluorescence could be an alternative analytical technique to measure TR in complex samples. Chemometric tools allowed the identification of the TR signal in the fluorescence landscapes, which could be further used for its non-destructive quantitation. The need for a more accurate criterion for optimal PARAFAC complexity emerged. © 2024 Society of Chemical Industry.

3.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175170

RESUMO

Agronomic practices and the winemaking process lead to the production of considerable quantities of waste and by-products. These are often considered waste with negative effects on environmental sustainability. However, vine shoots and grape stalks can be reused, representing a potential source of xylo-oligosaccharides and polyphenols. In this context, the purpose of this work was to obtain enriched extracts using three different autohydrolysis treatments with (i) H2O, (ii) H2O:EtOH, and (iii) H2O:Amberlyst. The obtained extracts were characterized by their xylo-oligosaccharide and polyphenol profiles using LC-MS techniques. The use of ethanol during autohydrolysis allowed for greater extraction of xylan-class compounds, especially in vine shoot samples, while an increase in antioxidant activity (128.04 and 425.66 µmol TE/g for ABTS and DPPH, respectively) and in total phenol content (90.92 mg GAE/g) was obtained for grape stalks.


Assuntos
Vitis , Vitis/química , Fenóis , Oligossacarídeos/química , Polifenóis , Extratos Vegetais/química , Antioxidantes/farmacologia , Etanol
4.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615566

RESUMO

The urgent need to increase the sustainability of crop production has pushed the agricultural sector towards the use of biostimulants based on natural products. The current work aimed to determine whether the preharvest application of two commercial formulations, based on a Fabaceae enzymatic hydrolysate or a blend of nitrogen sources including fulvic acids, and two lab-made aqueous extracts from Moringa oleifera leaves (MLEs), could improve yield, quality, and storability of lettuce grown in a hydroponic system, as compared to an untreated control. Lettuce plants treated with the MLEs showed significantly improved quality parameters (leaf number, area, and color), total phenolic content and antioxidant activity, and resistance against the fungal pathogen Botrytis cinerea, comparable to that obtained with commercial formulates, particularly those based on the protein hydrolysate. A difference between the M. oleifera extracts was observed, probably due to the different compositions. Although further large-scale trials are needed, the tested MLEs seem a promising safe and effective preharvest means to improve lettuce agronomic and quality parameters and decrease susceptibility to rots.


Assuntos
Moringa oleifera , Lactuca , Hidroponia , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Folhas de Planta
5.
J Sci Food Agric ; 102(1): 8-18, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453343

RESUMO

Research into dairy-free alternative products, whether plant-based or cell-based, is growing fast and the food industry is facing a new challenge of creating innovative, nutritious, accessible, and natural dairy-free cheese alternatives. The market demand for these products is continuing to increase owing to more people choosing to reduce or eliminate meat and dairy products from their diet for health, environmental sustainability, and/or ethical reasons. This review investigates the current status of dairy product alternatives. Legume proteins have good technological properties and are cheap, which gives them a strong commercial potential to be used in plant-based cheese-like products. However, few legume proteins have been explored in the formulation, development, and manufacture of a fully dairy-free cheese because of their undesirable properties: heat stable anti-nutritional factors and a beany flavor. These can be alleviated by novel or traditional and economical techniques. The improvement and diversification of the formulation of legume-based cheese alternatives is strongly suggested as a low-cost step towards more sustainable food chains. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Queijo/análise , Fabaceae/química , Ingredientes de Alimentos/análise , Manipulação de Alimentos , Humanos , Paladar
6.
J Sci Food Agric ; 102(6): 2199-2211, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855216

RESUMO

The food industry generates a large amount of waste and by-products, the disposal of which has a negative impact on the environment and the economy. Plant-based waste and by-products are rich in bioactive compounds such as dietary fiber, proteins, essential fatty acids, antioxidant compounds, vitamin, and minerals, which can be exploited to reduce the nutritional deficiencies of gluten-free products. The latter are known to be rich in fats and carbohydrates but lacking in bioactive compounds; the absence of gluten also has a negative effect on textural and sensory properties. Several attempts have been made to improve the quality of gluten-free products using alternative flours and additives, or by adopting innovative technologies. The exploitation of plant-based by-products would represent a chance to improve both the nutritional profile and the overall quality of gluten-free foods by further enhancing the sustainability of the agri-food system. After examining in detail the composition of plant-based by-products and waste, the objective of this review was to provide an overview of the effects of their inclusion on the quality of gluten-free products (bread, pasta, cake/muffins, biscuits and snacks). The advantages and drawbacks regarding the physical, sensory, and nutritional properties were critically evaluated. © 2021 Society of Chemical Industry.


Assuntos
Pão , Glutens , Dieta Livre de Glúten , Fibras na Dieta/metabolismo , Farinha , Glutens/metabolismo , Valor Nutritivo
7.
J Sci Food Agric ; 102(12): 5478-5487, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35355256

RESUMO

BACKGROUND: Consumer demand for plant-based cheese analogues (PCA) is growing because of the easy and versatile ways in which they can be used. However, the products available on the market are nutritionally poor. They are low in protein, high in saturated fat and sodium, and often characterized by a long list of ingredients. RESULTS: A clean label spreadable plant-based cheese analogue was developed using dry-fractionated pea protein and an emulsion-filled gel composed of extra virgin olive oil and inulin, added in different concentrations as fat replacer (10%, 13% and 15% of the formulation). First, nutritional and textural analyses were performed, and the results were compared with two commercial products. The products were high in protein (134 g kg-1 ) and low in fat (52.2 g kg-1 ). The formulated PCAs had similar spreadability index to the dairy cheese but lower hardness (15.1 vs. 19.0 N) and a higher elasticity (0.60 vs. 0.35) consequent to their lower fat content (52.2 vs. 250 g kg-1 ). Then, dry oregano and rosemary (5 g kg-1 ) were added to the PCA, and sensory evaluation and analysis of volatile compounds were conducted. The addition of spices masked the legume flavor and significantly enriched the final product with aromatic compounds. CONCLUSION: The use of dry-fractioned pea protein and of the emulsion-filled gel allowed us to develop a clean label and nutritionally valuable spreadable plant-based cheese analogue. Overall, the ingredients and product concepts developed could be used to upgrade the formulation of plant-based cheese on a larger scale. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Queijo , Proteínas de Ervilha , Queijo/análise , Emulsões , Inulina/análise , Azeite de Oliva
8.
J Sci Food Agric ; 102(3): 1185-1192, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34329502

RESUMO

BACKGROUND: Pomegranate juice has gained attention for its health properties, becoming consequently a highly demanded product. The revival of the pomegranate in Italy, as in other Mediterranean countries, starts with the planting of new intensive orchards characterized by both the new cultivation technique and new varieties. As a result of growing demand and high productivity, pomegranate could become an interesting crop to diversify farm income. This study seeks to determine the aril juice quality attributes and bioactive compounds of six pomegranate cultivars ('Mollar', 'Dente di cavallo', 'Acco', 'Jolly red', 'Wonderful' and 'Wonderful Super') and two local ecotypes ('Eco BA' and 'Eco FG') grown in Apulia region, southern Italy. RESULTS: The aril juices were evaluated for their main physicochemical properties (yield, color, pH, total soluble solids content, titratable acidity, sugar-acid ratio), chemical and bioactive compounds (vitamin C, phenolics, anthocyanins and antioxidant activities). 'Eco BA', 'Mollar' and 'Jolly red' genotypes were characterized by the highest maturity index, and then could be considered to be sweet-sour in taste. Total phenols and antioxidant activity were higher in 'Dente di cavallo' and 'Eco FG' genotypes. 'Eco FG' was also the richest in vitamin C, punicalagin and ellagic acids, while 'Dente di cavallo', 'Acco' and 'Wonderful' showed the highest content of the detected anthocyanin compounds. CONCLUSION: These results contribute to current knowledge about chemical composition, phenolic contents, anthocyanin profiles and antioxidant activity of pomegranate juice from different genotypes, showing in most cases an appreciable juice quality and bioactive profile, although significant differences among them were detected. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes/química , Sucos de Frutas e Vegetais/análise , Punica granatum/química , Antocianinas/química , Ácido Ascórbico/química , Cor , Ecótipo , Frutas/química , Frutas/genética , Frutas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Itália , Fenóis/química , Punica granatum/genética , Punica granatum/crescimento & desenvolvimento
9.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361595

RESUMO

Gluten-free (GF) products, including pasta, are often characterised by nutritional deficiencies, such as scarce dietary fibre and excess of calories. Chickpea flour is increasingly being used by the food industries. Hulls, rich in dietary fibre and bioactive compounds, are discarded after milling. The aim of this work was to evaluate the quality features of short-cut GF fresh pasta added of hull (8% w/w) derived from kabuli (KH) or Apulian black (ABH) chickpeas, in comparison with control GF pasta prepared without hull. The enriched pasta, which could be labelled as "high fibre", was characterised by a higher level of bioactive compounds and antioxidant activity than the control. ABH-enriched pasta showed the highest anthocyanins (33.37 ± 1.20 and 20.59 ± 0.11 mg/kg of cyanidin-3-O-glucoside on dry matter in raw and cooked pasta, respectively). Hull addition increased colour intensity and structural quality of GF pasta: ABH-enriched pasta had the lowest cooking loss and the highest water absorption capacity; KH-enriched pasta showed the highest firmness. No significant differences in sensory liking were found among the samples, except for "aftertaste". Chickpea hull can be used as an innovative ingredient to produce potentially functional GF pasta, meeting the dietary needs of consumers without affecting quality.


Assuntos
Cicer/química , Dieta Livre de Glúten , Fibras na Dieta/análise , Farinha/análise , Antocianinas/análise , Antioxidantes
10.
Molecules ; 26(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498727

RESUMO

Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the ß-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while ß-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.


Assuntos
Dióxido de Carbono/química , Composição de Medicamentos/métodos , Olea/química , Antioxidantes/química , Carotenoides/química , Clorofila/química , Azeite de Oliva/química , Extratos Vegetais/química , Polifenóis/química , Sitosteroides/química , Tocoferóis/química
11.
J Sci Food Agric ; 101(1): 15-26, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388855

RESUMO

Olive pomace, the solid by-product from virgin olive oil extraction, constitutes a remarkable source of functional compounds and has been exploited by several authors to formulate high value-added foods and, consequently, to foster the sustainability of the olive-oil chain. In this framework, the aim of the present review was to summarize the results on the application of functional compounds from olive pomace in food products. Phenolic-rich extracts from olive pomace were added to vegetable oils, fish burgers, fermented milk, and in the edible coating of fruit, to take advantage of their antioxidant and antimicrobial effects. Olive pomace was also used directly in the formulation of pasta and baked goods, by exploiting polyunsaturated fatty acids, phenolic compounds, and dietary fiber to obtain high value-added healthy foods and / or to extend their shelf-life. With the same scope, olive pomace was also added to animal feeds, providing healthy, improved animal products. Different authors used olive pomace to produce biodegradable materials and / or active packaging able to increase the content of bioactive compounds and the oxidative stability of foods. Overall, the results highlighted, in most cases, the effectiveness of the addition of olive pomace-derived functional compounds in improving nutritional value, quality, and / or the shelf-life of foods. However, the direct addition of olive pomace was found to be more challenging, especially due to alterations in the sensory and textural features of food. © 2020 Society of Chemical Industry.


Assuntos
Olea/química , Extratos Vegetais/isolamento & purificação , Resíduos/análise , Aditivos Alimentares/química , Aditivos Alimentares/isolamento & purificação , Frutas/química , Extratos Vegetais/química
12.
J Sci Food Agric ; 101(8): 3099-3116, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33275783

RESUMO

Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.


Assuntos
Aditivos Alimentares/química , Olea/química , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/química , Armazenamento de Alimentos
13.
J Sci Food Agric ; 101(1): 131-138, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32608514

RESUMO

BACKGROUND: Acorn fruit and its components and by-products are receiving renewed interest due to their nutritional and phytochemical features. In particular, the oil extracted from acorns is recognized for having high nutritional quality and for being rich in bioactive compounds. Despite the growing interest, few papers are available that consider the evolution of acorn-oil characteristics during storage. Our aim was to investigate the storage-related changes in acorn oils extracted from three Quercus species grown in Algeria (Q. ilex, Q. suber, and Q. coccifera) 180 days after production, with a focus on polar and volatile compounds, not yet investigated. Basic quality parameters, phenolic content, antioxidant activity and induction time were also monitored. RESULTS: The oxidation markers (peroxide value and UV absorptions) increased during storage, whereas antioxidants decreased. A distinctive volatile profile was observed at the time of production, which underwent changes during storage. Polar compounds increased, whereas induction time decreased. The oil extracted from Quercus suber L. was the most affected by storage time. CONCLUSION: Floral and fruity volatile compounds detected in the oils' headspace could explain the pleasant flavor of acorn oils reported by other authors. As with other vegetable oils, storage depletes both volatiles and antioxidants and produces oxidation compounds, such as oxidized triacylglycerols. However, the acorn oils that were studied were quite stable under storage in the dark at room temperature for 6 months. © 2020 Society of Chemical Industry.


Assuntos
Óleos de Plantas/química , Quercus/química , Armazenamento de Alimentos , Frutas/química , Oxirredução , Fenóis/química , Sementes/química , Compostos Orgânicos Voláteis/química
14.
J Sci Food Agric ; 100(15): 5539-5545, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32596812

RESUMO

BACKGROUND: Persistent water shortage, typical of Mediterranean agricultural systems, has driven production methods towards the use of regulated deficit irrigation (DI) strategies, which may allow important water savings. To evaluate the extent to which pomegranate (cv. 'Wonderful') attributes may differ depending on the irrigation application rates, we investigated the effect of four different irrigation regimes (100, 75, 50, and 25% of maximum crop evapotranspiration - ETC ) on their morpho-pomological, physico-chemical properties, and bioactive compounds. RESULTS: The weight and the size of whole fruits, and the number of arils and their weight per fruit, decreased significantly with the restriction of ETC water volumes applied to the crop. Minor differences were observed in soluble solids, pH, color of fruit skins, arils, and juices, although total acidity, maturity index, vitamin C, glucose, and fructose were not affected. However, total phenol content and antioxidant activity in juices were higher in the samples subjected to the DI treatments than in those submitted to full irrigation, showing the highest value at 50% ETC . A similar trend was found for anthocyanins delphinidin-3,5-diglucoside and delphinidin-3-glucoside, reaching the highest concentration at 50% ETC . Among non-anthocyanin compounds, punicalagins and pedunculagin were more concentrated in the 75% ETc samples. CONCLUSION: The results of the present study indicate that the DI strategy throughout all the growing season is likely to have important implication for the pomegranate's physical, chemical, and phytochemical properties. Knowledge of them is useful in view of their processing and nutritional properties. © 2020 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/métodos , Sucos de Frutas e Vegetais/análise , Frutas/química , Punica granatum/metabolismo , Água/análise , Antocianinas/análise , Antioxidantes/análise , Ácido Ascórbico/análise , Cor , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fenóis/análise , Compostos Fitoquímicos/análise , Punica granatum/química , Punica granatum/crescimento & desenvolvimento , Água/metabolismo
15.
J Sci Food Agric ; 99(12): 5594-5600, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31206180

RESUMO

BACKGROUND: Innovative technologies are experimentally applied to the virgin olive oil extraction process in order to make it continuous and more efficient. Most of the efforts aim at overcoming the limitations of the traditional malaxation step, which, however, is essential for the development of virgin olive oil sensory notes. RESULTS: Compared to the traditional process, innovative technologies based on the heat exchanger led generally to a decrement in volatile lipoxygenase (LOX) alcohols linked to alcohol dehydrogenase activity and, conversely, to a slightly increase in volatile LOX esters. Aldehydes from the same pathway were not significantly affected. However, an industrial combined plant constructed from a heat exchanger, low-frequency ultrasound device and microwave apparatus determined the highest 'fruity' intensity perceived by panellists, in accordance with the highest value of total volatiles, with values significantly higher than heat exchanger alone, which, instead, had the lowest levels of hexanal and LOX alcohols. The pungent taste showed the same trend observed for 'fruity' intensity, whereas bitter taste did not show significant differences among trials. CONCLUSION: The introduction of ultrasound, coupled with heat exchanger and microwave, seemed not to modify the behaviour of enzymes of the LOX pathway, and the obtained virgin olive oils showed volatiles and organoleptic characteristics not significantly different from those obtained by the traditional olive oil extraction process. These findings provided the first insights into the effect of the combination of innovative technologies in the olive oil extraction process on virgin olive oil volatiles and sensory characteristics. © 2019 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Olea/química , Azeite de Oliva/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação , Frutas/química , Humanos , Azeite de Oliva/análise , Paladar , Compostos Orgânicos Voláteis/química
16.
J Sci Food Agric ; 99(5): 2513-2520, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30379336

RESUMO

BACKGROUND: Determination of the total phenolic content (TPC) in olive oils is of great interest, as phenolic compounds affect the health benefits, sensory attributes and oxidative stability of olive oils. The aim of this study was to explore the feasibility of direct front-face fluorescence measurements coupled with chemometrics for developing multivatiate models for discrimination between virgin olive oils with low and high TPC and determination of TPC concentration. RESULTS: Parallel factor analysis and principal component analysis of fluorescence excitation-emission matrices (EEMs) of virgin olive oils revealed different fluorescent properties for samples with low and high TPC. A perfect discrimination of oils with low and high TPC was achieved using partial least squares (PLS) discriminant analysis. The best regression model for the prediction of TPC was based on the PLS analysis of the unfolded entire EEMs (R2  = 0.951, RPD = 4.0). CONCLUSIONS: The results show the potential of fluorescence spectroscopy for direct screening of virgin olive oils for TPC. This may contribute to the development of fast screening methods for TPC assessment, providing an alternative to conventional assays. The procedure is environmentally friendly and fulfils the requirements for green analytical chemistry. © 2018 Society of Chemical Industry.


Assuntos
Azeite de Oliva/química , Fenóis/química , Espectrometria de Fluorescência/métodos , Análise Discriminante , Análise dos Mínimos Quadrados , Oxirredução , Análise de Componente Principal
17.
J Sci Food Agric ; 99(14): 6620-6627, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31350764

RESUMO

BACKGROUND: Most olive by-products, like olive leaves, are still undervalued despite their strong potential as a source of healthy and functional components. To exploit their potential use as active ingredients in complex food systems, it is of primary importance the knowledge of their composition and technological functionality which represented the objective of this work. RESULTS: Phenolic extracts from olive leaves, obtained by extraction with pure water (Eth0) and two different water-ethanol solutions (Eth30, Eth70), were characterized for their composition and technological properties such as water- / oil- holding ability, air/water surface activity, and emulsifying capacity at pH 4.5 and 7. Their chemical stability over time, at constant temperature, was also investigated. The technological properties were affected by extraction media and pH. Phenolic extracts displayed significant surface activity, showing dose-dependent behavior. Surface properties were affected by pH and this result was confirmed by the emulsifying capacity. The extracts showed good oil-holding capacity but limited water-binding capacity. Eth70 showed the highest chemical stability, which was confirmed by the rate parameters obtained by modeling data using a Weibull model. CONCLUSION: The results of this study highlight that olive leaves extracts can represent a useful ingredient in acidic lipid-containing foods. © 2019 Society of Chemical Industry.


Assuntos
Olea/química , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Ingredientes de Alimentos/análise , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação
18.
J Sci Food Agric ; 98(15): 5647-5655, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29708600

RESUMO

BACKGROUND: Several workers have studied the effect of harvest time on chemical and nutritional composition of almonds, but the results are partly conflicting, probably due to differences in the cultivars considered and to different agronomic and climatic conditions in the growing areas. In this paper, the influence of harvest time and cultivar on the chemical and nutritional composition of almonds (Prunus dulcis (Mill). D.A. Webb) were evaluated. Ten cultivars were considered, grown in the same orchard and subjected to the same agronomical regime. Almonds were collected at two different harvest times: (i) when the fruits were unripe, but already edible, and showed green and moist hull; and (ii) when the fruits were ripe, with dry brown hull. The analyses of proximate composition, fatty acid profile, total phenolic compounds, and antioxidant activity were carried out. RESULTS: Lipid content increased (P < 0.001) during ripening, while both protein and carbohydrate content decreased (P < 0.01). Fatty acid composition showed a not univocal behavior during ripening and was highly influenced by cultivar. Total phenolic compounds and antioxidant activity varied among cultivars but increased during ripening with the exception of cv Marcona. The 'Genco' and 'Francolì' cultivars were found to be phenolic rich. CONCLUSION: Harvest time and cultivar significantly influenced the chemical and nutritional composition of almonds. Genotype strongly influenced fatty acid composition and total phenolic compounds. The changes of bioactive compounds and antioxidant activity suggest that the synthesis of antioxidants also occurs in the last stage of ripening. Unripe almonds, a valuable niche product, showed interesting nutritional value. © 2018 Society of Chemical Industry.


Assuntos
Nozes/química , Prunus dulcis/química , Antioxidantes/química , Valor Nutritivo , Nozes/classificação , Nozes/crescimento & desenvolvimento , Fenóis/química , Prunus dulcis/classificação , Prunus dulcis/crescimento & desenvolvimento , Fatores de Tempo
19.
J Sci Food Agric ; 98(11): 4279-4286, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29427340

RESUMO

BACKGROUND: Nowadays, olive oil extraction is basically achieved by means of two-phase decanters, which allow a reduction of water consumption and the leaching of phenolic compounds. Despite this, most of the working settings derive from studies carried out on three-phase decanters. Hence, the aim of the present study was to assess the influence of two-phase decanter feed pipe position (FP) on the extraction efficiency and chemical-sensory characteristics of virgin olive oil. Three different positions were considered: at 825 mm (FP1), 610 mm (FP2) and 520 mm (FP3) from the outlet of the oily phase. RESULTS: Position FP3 allowed the highest oil recovery (up to 10%), the lowest percentage of oil in the olive pomace and, in general, a regular trend in terms of oil extraction efficiency. However, the oily must that came out of the decanter was not completely clean in terms of residual content of solid sediment and water. The feeding position partially affected the profile of antioxidant compounds. CONCLUSION: In two-phase decanters, loading the olive paste close to the outlet of the oily phase is recommended to increase the extraction efficiency without jeopardizing the chemical-sensory characteristics of virgin olive oil. © 2018 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Olea/química , Azeite de Oliva/química , Azeite de Oliva/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Manipulação de Alimentos/instrumentação , Fenóis
20.
J Sci Food Agric ; 97(14): 4904-4911, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28397239

RESUMO

BACKGROUND: Few studies have investigated the effects of frozen storage on processed vegetables. The present study evaluates its effects on the quality characteristics of non-thermally stabilized tomato-based pâtés compared to thermally stabilized pâtés stored at room temperature. Two different types of tomato-based pâtés were analyzed in terms of bio-active compounds, as well as colorimetric parameters and oxidative degradation just after processing and also after 4, 8 and 12 months of storage. RESULTS: Thermal treatment mainly affected the colorimetric parameters and oxidative degradation, whereas its effects on bio-active compounds became more visible and significant during storage. Freezing allowed in both pâtés to maintain significantly higher a* values than storage at room temperature, whereas brightness, which is linked to residual activities of different enzymes, varied during storage according to the ingredient formulation. During storage, oxidative degradation of the lipid fraction was more marked in the pâté containing a lower quality oil, and less marked when the absence of thermal treatment was combined with frozen storage. CONCLUSION: Freezing could represent a viable alternative way to preserve high-quality products over time. An optimal combination of blanching, freezing rate, storage and thawing conditions will provide the best results in terms of the quality/price ratio. © 2017 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Preparações de Plantas/química , Solanum lycopersicum/química , Verduras/química , Cor , Armazenamento de Alimentos , Congelamento , Lipídeos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA