RESUMO
In this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector.
Assuntos
Pão/microbiologia , Frutose/metabolismo , Glucose/metabolismo , Saccharomycetales/fisiologia , Técnicas Bacteriológicas , Fermentação , Lactobacillales/fisiologia , Concentração Osmolar , Saccharomyces cerevisiae/fisiologia , Saccharomycetales/crescimento & desenvolvimentoRESUMO
BACKGROUND: Oleaginous yeasts are able to accumulate very high levels of neutral lipids especially under condition of excess of carbon and nitrogen limitation (medium with high C/N ratio). This makes necessary the use of two-steps processes in order to achieve high level of biomass and lipid. To simplify the process, the decoupling of lipid synthesis from nitrogen starvation, by establishing a cytosolic acetyl-CoA formation pathway alternative to the one catalysed by ATP-citrate lyase, can be useful. RESULTS: In this work, we introduced a new cytoplasmic route for acetyl-CoA (AcCoA) formation in Rhodosporidium azoricum by overexpressing genes encoding for homologous phosphoketolase (Xfpk) and heterologous phosphotransacetylase (Pta). The engineered strain PTAPK4 exhibits higher lipid content and produces higher lipid concentration than the wild type strain when it was cultivated in media containing different C/N ratios. In a bioreactor process performed on glucose/xylose mixture, to simulate an industrial process for lipid production from lignocellulosic materials, we obtained an increase of 89% in final lipid concentration by the engineered strain in comparison to the wild type. This indicates that the transformed strain can produce higher cellular biomass with a high lipid content than the wild type. The transformed strain furthermore evidenced the advantage over the wild type in performing this process, being the lipid yields 0.13 and 0.05, respectively. CONCLUSION: Our results show that the overexpression of homologous Xfpk and heterologous Pta activities in R. azoricum creates a new cytosolic AcCoA supply that decouples lipid production from nitrogen starvation. This metabolic modification allows improving lipid production in cultural conditions that can be suitable for the development of industrial bioprocesses using lignocellulosic hydrolysates.
Assuntos
Basidiomycota/metabolismo , Lignina/metabolismo , Lipídeos/biossíntese , Engenharia Metabólica/métodos , Acetilcoenzima A/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Bacillus subtilis/genética , Biomassa , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Genes Bacterianos , Genes Fúngicos , Engenharia Genética , Recombinação Homóloga , Metabolismo dos Lipídeos/genética , Nitrogênio/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Proteínas Recombinantes , TransfecçãoRESUMO
The metabolism of proliferating cells shows common features even in evolutionary distant organisms such as mammals and yeasts, for example the requirement for anabolic processes under tight control of signaling pathways. Analysis of the rewiring of metabolism, which occurs following the dysregulation of signaling pathways, provides new knowledge about the mechanisms underlying cell proliferation. The key energy regulator in yeast Snf1 and its mammalian ortholog AMPK have earlier been shown to have similar functions at glucose limited conditions and here we show that they also have analogies when grown with glucose excess. We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells remodel their metabolism fueling mitochondria and show glucose and amino acids addiction, a typical hallmark of cancer cells.
Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Aminoácidos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise/efeitos dos fármacos , Carbono/metabolismo , Proliferação de Células , Reprogramação Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Graxos/biossíntese , Fermentação/efeitos dos fármacos , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Glucose/farmacologia , Ácido Glutâmico/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Modelos Biológicos , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
UNLABELLED: The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE: This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid.
Assuntos
Ácido Acético/farmacologia , Dekkera/efeitos dos fármacos , Dekkera/metabolismo , Oxigênio/metabolismo , Dekkera/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Estresse Oxidativo/efeitos dos fármacosRESUMO
Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the 'short-term Crabtree effect', and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae.
Assuntos
Brettanomyces/genética , Brettanomyces/metabolismo , Galactose/metabolismo , Redes e Vias Metabólicas/genética , Ácido Acético/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Nitrogênio/metabolismoRESUMO
Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the "Custers effect", in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes.
Assuntos
Dekkera/enzimologia , Fermentação , Nitratos/metabolismo , Etanol/metabolismo , Glucose/metabolismoRESUMO
Phytic acid is an anti-nutritional compound able to chelate proteins and ions. For this reason, the food industry is looking for a convenient method which allows its degradation. Phytases are a class of enzymes that catalyze the degradation of phytic acid and are used as additives in feed-related industrial processes. Due to their industrial importance, our goal was to identify new activities that exhibit best performances in terms of tolerance to high temperature and acidic pH. As a result of an initial screening on 21 yeast species, we focused our attention on phytases found in Cyberlindnera jadinii, Kluyveromyces marxianus, and Torulaspora delbrueckeii. In particular, C. jadinii showed the highest secreted and cell-bound activity, with optimum of temperature and pH at 50°C and 4.5, respectively. These characteristics suggest that this enzyme could be successfully used for feed as well as for food-related industrial applications.
RESUMO
The possibility to perform bioprocesses with reduced ecological footprint to produce natural compounds and catalyzers of industrial interest is pushing the research for salt tolerant microorganisms able to grow on seawater-based media and able to use a wide range of nutrients coming from waste. In this study we focused our attention on a Debaryomyces hansenii marine strain (Mo40). We optimized cultivation in a bioreactor at low pH on seawater-based media containing a mixture of sugars (glucose and xylose) and urea. Under these conditions the strain exhibited high growth rate and biomass yield. In addition, we characterized potential applications of this yeast biomass in food/feed industry. We show that Mo40 can produce a biomass containing 45% proteins and 20% lipids. This strain is also able to degrade phytic acid by a cell-bound phytase activity. These features represent an appealing starting point for obtaining D. hansenii biomass in a cheap and environmentally friendly way, and for potential use as an additive or to replace unsustainable ingredients in the feed or food industries, as this species is included in the QPS EFSA list (Quality Presumption as Safe-European Food Safety Authority).
RESUMO
A screening among marine yeasts was carried out for nitrile hydrolyzing activity. Meyerozyma guilliermondii LM2 (UBOCC-A-214008) was able to efficiently grow on benzonitrile and cyclohexanecarbonitrile (CECN) as sole nitrogen sources. A two-step one-pot method for obtaining cells of M. guilliermondii LM2 (UBOCC-A-214008) endowed with high nitrilase activity was established; the resulting whole cells converted different nitriles with high molar conversions and showed interesting enantioselectivity toward racemic substrates. Nitrilase from M. guilliermondii LM2 (UBOCC-A-214008) displayed high activity on aromatic substrates, but also arylaliphatic and aliphatic substrates were accepted. Salt-resistant M. guilliermondii LM2 (UBOCC-A-214008) was used in media with different salinity, being highly active up to 1.5 M NaCl concentration. Finally, hydrolysis of nitriles was efficiently performed using a bioprocess (yeast growth and biotransformation with resting cells) entirely carried out in seawater.
Assuntos
Biocatálise , Hidrólise , Nitrilas/metabolismo , Saccharomycetales/metabolismo , Aminoidrolases , Cicloexanos/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/crescimento & desenvolvimento , Salinidade , Água do MarRESUMO
The use of seawater and marine microorganisms can represent a sustainable alternative to avoid large consumption of freshwater performing industrial bioprocesses. Debaryomyces hansenii, which is a known halotolerant yeast, possess metabolic traits appealing for developing such processes. For this purpose, we studied salt stress exposure of two D. hansenii strains isolated from marine fauna. We found that the presence of sea salts during the cultivation results in a slight decrease of biomass yields. Nevertheless, higher concentration of NaCl (2 M) negatively affects other growth parameters, like growth rate and glucose consumption rate. To maintain an isosmotic condition, the cells accumulate glycerol as compatible solute. Flow cytometry analysis revealed that the osmotic adaptation causes a reduced cellular permeability to cell-permeant dye SYBR Green I. We demonstrate that this fast and reversible phenomenon is correlated to the induction of membrane depolarization, and occurred even in presence of high concentration of sorbitol. The decrease of membrane permeability induced by osmotic stress confers to D. hansenii resistance to cationic drugs like Hygromycin B. In addition, we describe that also in Saccharomyces cerevisiae the exposure to hyper-osmotic conditions induced membrane depolarization and reduced the membrane permeability. These aspects are very relevant for the optimization of industrial bioprocesses, as in the case of fermentations and bioconversions carried out by using media/buffers containing high nutrients/salts concentrations. Indeed, an efficient transport of molecules (nutrients, substrates, and products) is the prerequisite for an efficient cellular performance, and ultimately for the efficiency of the industrial process.
RESUMO
The influence of cultural conditions on lipid production was investigated in two species, Trichosporon oleaginosus and Rhodosporidium azoricum. We showed that nitrogen limitation is not the main factor triggering the mechanism of lipid accumulation in T. oleaginosus. Moreover, a scarce availability of oxygen negatively affected lipid synthesis to a lesser extent in T. oleaginosus than in R. azoricum. This highlights how the importance of controlling fermentation parameters is strictly linked to the yeast species employed. We showed that these parameters affect the activity of important enzymes, influencing the metabolic fluxes into different pathways, in particular pentose phosphate pathway and cytoplasmic pyruvate bypass. Furthermore, T. oleaginosus exhibited wider substrate flexibility, faster growth and higher lipid accumulation in fed-batch cultivation. Microbial oils obtained from both yeasts proved a valuable feedstock, alternative to vegetable oils, for advanced diesel biofuel production.