Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2185-2202.e12, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788717

RESUMO

Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector's toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr's pivotal role in immunity.


Assuntos
Bacteriófagos , Microscopia Crioeletrônica , NAD , NAD/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/imunologia , Hidrólise , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/imunologia , Sistemas Toxina-Antitoxina/genética , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo
2.
Nature ; 616(7956): 384-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020015

RESUMO

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Assuntos
Proteínas Associadas a CRISPR , Elementos de DNA Transponíveis , Deinococcus , Endonucleases , Edição de Genes , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Deinococcus/enzimologia , Deinococcus/genética , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , Endonucleases/química , Endonucleases/classificação , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Evolução Molecular , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
3.
Cell Commun Signal ; 21(1): 30, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737758

RESUMO

BACKGROUND: C3G is a guanine nucleotide exchange factor (GEF) that activates Rap1 to promote cell adhesion. Resting C3G is autoinhibited and the GEF activity is released by stimuli that signal through tyrosine kinases. C3G is activated by tyrosine phosphorylation and interaction with Crk adaptor proteins, whose expression is elevated in multiple human cancers. However, the molecular details of C3G activation and the interplay between phosphorylation and Crk interaction are poorly understood. METHODS: We combined biochemical, biophysical, and cell biology approaches to elucidate the mechanisms of C3G activation. Binding of Crk adaptor proteins to four proline-rich motifs (P1 to P4) in C3G was characterized in vitro using isothermal titration calorimetry and sedimentation velocity, and in Jurkat and HEK293T cells by affinity pull-down assays. The nucleotide exchange activity of C3G over Rap1 was measured using nucleotide-dissociation kinetic assays. Jurkat cells were also used to analyze C3G translocation to the plasma membrane and the C3G-dependent activation of Rap1 upon ligation of T cell receptors. RESULTS: CrkL interacts through its SH3N domain with sites P1 and P2 of inactive C3G in vitro and in Jurkat and HEK293T cells, and these sites are necessary to recruit C3G to the plasma membrane. However, direct stimulation of the GEF activity requires binding of Crk proteins to the P3 and P4 sites. P3 is occluded in resting C3G and is essential for activation, while P4 contributes secondarily towards complete stimulation. Tyrosine phosphorylation of C3G alone causes marginal activation. Instead, phosphorylation primes C3G lowering the concentration of Crk proteins required for activation and increasing the maximum activity. Unexpectedly, optimal activation also requires the interaction of CrkL-SH2 domain with phosphorylated C3G. CONCLUSION: Our study revealed that phosphorylation of C3G by Src and Crk-binding form a two-factor mechanism that ensures tight control of C3G activation. Additionally, the simultaneous SH2 and SH3N interaction of CrkL with C3G, required for the activation, reveals a novel adaptor-independent function of Crk proteins relevant to understanding their role in physiological signaling and their deregulation in diseases. Video abstract.


Assuntos
Fator 2 de Liberação do Nucleotídeo Guanina , Proteínas Nucleares , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo , Células HEK293 , Proteínas Nucleares/metabolismo , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Domínios de Homologia de src , Tirosina/metabolismo
4.
Biochemistry ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130724

RESUMO

CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.

5.
J Biol Chem ; 291(36): 18643-62, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27413182

RESUMO

Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1-SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7-SR9 at lower resolution. The SR7-SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3-SR6 and SR7-SR9 regions are rod-like segments and that SR3-SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals.


Assuntos
Plectina/química , Cristalografia por Raios X , Humanos , Plectina/genética , Domínios Proteicos
6.
mBio ; 14(4): e0063823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37526476

RESUMO

An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.


Assuntos
Candida albicans , Candidíase , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candidíase/microbiologia , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas
7.
Nat Commun ; 12(1): 4476, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294706

RESUMO

CRISPR-Cas12j is a recently identified family of miniaturized RNA-guided endonucleases from phages. These ribonucleoproteins provide a compact scaffold gathering all key activities of a genome editing tool. We provide the first structural insight into the Cas12j family by determining the cryoEM structure of Cas12j3/R-loop complex after DNA cleavage. The structure reveals the machinery for PAM recognition, hybrid assembly and DNA cleavage. The crRNA-DNA hybrid is directed to the stop domain that splits the hybrid, guiding the T-strand towards the catalytic site. The conserved RuvC insertion is anchored in the stop domain and interacts along the phosphate backbone of the crRNA in the hybrid. The assembly of a hybrid longer than 12-nt activates catalysis through key functional residues in the RuvC insertion. Our findings suggest why Cas12j unleashes unspecific ssDNA degradation after activation. A site-directed mutagenesis analysis supports the DNA cutting mechanism, providing new avenues to redesign CRISPR-Cas12j nucleases for genome editing.


Assuntos
Sistemas CRISPR-Cas , Endodesoxirribonucleases/química , Edição de Genes , Bacteriófagos/enzimologia , Bacteriófagos/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Clivagem do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
8.
Mol Cell Oncol ; 8(1): 1837581, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33553598

RESUMO

Abnormally increased signaling by the GTPase RAP1 favors progression of diverse tumors. We have characterized the auto-regulation and activation of C3G (RAPGEF1), an activator of RAP1. This led us to discover mutations in non-Hodgkin's lymphomas that activate C3G-RAP1 constitutively, suggesting that deregulation of C3G may favor the dissemination of tumor cells.

9.
Sci Signal ; 13(647)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873726

RESUMO

C3G is a guanine nucleotide exchange factor (GEF) that regulates cell adhesion and migration by activating the GTPase Rap1. The GEF activity of C3G is stimulated by the adaptor proteins Crk and CrkL and by tyrosine phosphorylation. Here, we uncovered mechanisms of C3G autoinhibition and activation. Specifically, we found that two intramolecular interactions regulate the activity of C3G. First, an autoinhibitory region (AIR) within the central domain of C3G binds to and blocks the catalytic Cdc25H domain. Second, the binding of the protein's N-terminal domain to its Ras exchanger motif (REM) is required for its GEF activity. CrkL activated C3G by displacing the AIR/Cdc25HD interaction. Two missense mutations in the AIR found in non-Hodgkin's lymphomas, Y554H and M555K, disrupted the autoinhibitory mechanism. Expression of C3G-Y554H or C3G-M555K in Ba/F3 pro-B cells caused constitutive activation of Rap1 and, consequently, the integrin LFA-1. Our findings suggest that sustained Rap1 activation by deregulated C3G might promote progression of lymphomas and that designing therapeutics to target C3G might treat these malignancies.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Homeostase/fisiologia , Linfoma não Hodgkin/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Biocatálise , Células COS , Linhagem Celular , Chlorocebus aethiops , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Linfoma não Hodgkin/genética , Camundongos , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Proteínas rap1 de Ligação ao GTP/genética , Domínios de Homologia de src
10.
Structure ; 27(6): 952-964.e6, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31006587

RESUMO

Mechanical stability of epithelia requires firm attachment to the basement membrane via hemidesmosomes. Dysfunction of hemidesmosomal proteins causes severe skin-blistering diseases. Two plakins, plectin and BP230 (BPAG1e), link the integrin α6ß4 to intermediate filaments in epidermal hemidesmosomes. Here, we show that a linear sequence within the isoform-specific N-terminal region of BP230 binds to the third and fourth FnIII domains of ß4. The crystal structure of the complex and mutagenesis analysis revealed that BP230 binds between the two domains of ß4. BP230 induces closing of the two FnIII domains that are locked in place by an interdomain ionic clasp required for binding. Disruption of BP230-ß4 binding prevents recruitment of BP230 to hemidesmosomes in human keratinocytes, revealing a key role of this interaction for hemidesmosome assembly. Phosphomimetic substitutions in ß4 and BP230 destabilize the complex. Thus, our study provides insights into the architecture of hemidesmosomes and potential mechanisms of regulation.


Assuntos
Distonina/química , Hemidesmossomos/metabolismo , Integrina alfa6beta4/química , Penfigoide Bolhoso/metabolismo , Domínios Proteicos , Sequência de Aminoácidos , Membrana Basal/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Distonina/genética , Distonina/metabolismo , Hemidesmossomos/genética , Humanos , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Modelos Moleculares , Mutagênese , Penfigoide Bolhoso/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos
11.
Methods Enzymol ; 569: 177-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26778559

RESUMO

Plectin and BPAG1e belong to the plakin family of high-molecular-weight proteins that interconnect the cytoskeletal systems and anchor them to junctional complexes. Plectin and BPAG1e are prototypical plakins with a similar tripartite modular structure. The N- and C-terminal regions are built of multiple discrete structural domains, while the central rod domain mediates dimerization by coiled-coil interactions. Owing to the mosaic organization of plakins, the structure of their constituent individual domains or small multi-domain segments can be analyzed isolated. Yet, understanding the integrated function of large regions, oligomers, and heterocomplexes of plakins is difficult due to the large and segmented structure. Here, we describe methods for the production of plectin and BPAG1e samples suitable for structural and biophysical analysis. In addition, we discuss the combination of hybrid methods that yield information at several resolution levels to study the complex, multi-domain, and flexible structure of plakins.


Assuntos
Proteínas de Transporte/isolamento & purificação , Proteínas do Citoesqueleto/isolamento & purificação , Proteínas do Tecido Nervoso/isolamento & purificação , Plectina/isolamento & purificação , Proteínas de Transporte/química , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Distonina , Escherichia coli , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Plectina/química , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA