Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36428349

RESUMO

Varroa destructor is a mite causing serious damage to western honey bees. Managed colonies require artificial varroa control, which may be best obtained by combining mechanical and chemical methods. This study explored the possible effects of the combination of queen caging and oxalic acid treatment on the immune system (glucose oxidase, phenoloxidase, and vitellogenin) and antioxidant enzymes (superoxide dismutase, catalase, and glutathione S transferase) of first post-treatment generation drones and workers (newly emerged, nurses, and foragers). The combination of queen caging and oxalic acid treatment caused a decrease in glucose oxidase activity only in drones. This could cause issues of cuticular sclerotization, making a drone prone to bite injuries, dehydration, and pathogens. No differences in phenoloxidase activity were recorded in both post-treatment drones and workers generation. Among worker bees, the treatment determined a lower vitellogenin content in newly emerged bees while the result was higher in nurse bees. However, the treatment did not significantly affect the antioxidant enzymes activity in either drones or workers. The results obtained in this investigation suggest that the combined anti-varroa treatments had no negative effects on oxidative stress in the first post-treatment generation bees, while effects did occur on the immune system. Further investigations on the potential effects of glucose oxidase decrease in drones and vitellogenin content variation in workers are desirable.

2.
Pathogens ; 10(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808848

RESUMO

Knowledge regarding the honey bee pathogens borne by invasive bee pests remains scarce. This investigation aimed to assess the presence in Aethina tumida (small hive beetle, SHB) adults of honey bee pathogens belonging to the following groups: (i) bacteria (Paenibacillus larvae and Melissococcus plutonius), (ii) trypanosomatids (Lotmaria passim and Crithidia mellificae), and (iii) viruses (black queen cell virus, Kashmir bee virus, deformed wing virus, slow paralysis virus, sacbrood virus, Israeli acute paralysis virus, acute bee paralysis virus, chronic bee paralysis virus). Specimens were collected from free-flying colonies in Gainesville (Florida, USA) in summer 2017. The results of the molecular analysis show the presence of L. passim, C. mellificae, and replicative forms of deformed wing virus (DWV) and Kashmir bee virus (KBV). Replicative forms of KBV have not previously been reported. These results support the hypothesis of pathogen spillover between managed honey bees and the SHB, and these dynamics require further investigation.

3.
Microorganisms ; 9(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924845

RESUMO

Nosema ceranae is a widespread parasite responsible for nosemosis Type C in Apis mellifera honey bees, reducing colony survival. The antibiotic fumagillin is the only commercial treatment available, but concerns are emerging about its persistence, safety, and pathogen resistance. The use of natural substances from Brassicaceae defatted seed meals (DSMs) with known antimicrobial and antioxidant properties was explored. Artificially infected bees were fed for 8 days with candies enriched with two concentrations, 2% and 4%, of two DSMs from Brassica nigra and Eruca sativa, containing a known amount of different glucosinolates (GSLs). The food palatability, GSL intake, bee survival, and treatment effects on N. ceranae spore counts were evaluated. Food consumption was higher for the two 2% DSM patties, for both B. nigra and E. sativa, but the GSL intake did not increase by increasing DSM to 4%, due to the resulting lower palatability. The 2% B. nigra patty decreased the bee mortality, while the higher concentration had a toxic effect. The N. ceranae control was significant for all formulates with respect to the untreated control (312,192.6 +/- 14,443.4 s.e.), and was higher for 4% B. nigra (120,366.3 +/- 13,307.1 s.e.). GSL hydrolysis products, the isothiocyanates, were detected and quantified in bee gut tissues. Brassicaceae DSMs showed promising results for their nutraceutical and protective effects on bees artificially infected with N. ceranae spores at the laboratory level. Trials in the field should confirm these results.

4.
Eur J Protistol ; 63: 44-50, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29459253

RESUMO

Nosema ceranae is now a widespread honey bee pathogen with high incidence in apiculture. Rapid and reliable detection and quantification methods are a matter of concern for research community, nowadays mainly relying on the use of biomolecular techniques such as PCR, RT-PCR or HRMA. The aim of this technical paper is to provide a new qPCR assay, based on the highly-conserved protein coding gene Hsp70, to detect and quantify the microsporidian Nosema ceranae affecting the western honey bee Apis mellifera. The validation steps to assess efficiency, sensitivity, specificity and robustness of the assay are described also.


Assuntos
Abelhas/parasitologia , Proteínas de Choque Térmico HSP70/genética , Nosema/fisiologia , Parasitologia/métodos , Reação em Cadeia da Polimerase , Animais , Nosema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA