Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Physiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865443

RESUMO

Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.

2.
Plant Cell Environ ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644584

RESUMO

The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.

3.
Plant Cell Environ ; 46(11): 3229-3241, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526514

RESUMO

Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.

4.
Plant Cell Environ ; 45(4): 1204-1215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984700

RESUMO

Xylem embolism resistance varies across species influencing drought tolerance, yet little is known about the determinants of the embolism resistance of an individual conduit. Here we conducted an experiment using the optical vulnerability method to test whether individual conduits have a specific water potential threshold for embolism formation and whether pre-existing embolism in neighbouring conduits alters this threshold. Observations were made on a diverse sample of angiosperm and conifer species through a cycle of dehydration, rehydration and subsequent dehydration to death. Upon rehydration after the formation of embolism, no refilling was observed. When little pre-existing embolism was present, xylem conduits had a conserved, individual embolism-resistance threshold that varied across the population of conduits. The consequence of a variable conduit-specific embolism threshold is that a small degree of pre-existing embolism in the xylem results in apparently more resistant xylem in subsequent dehydrations, particularly in angiosperms with vessels. While our results suggest that pit membranes separating xylem conduits are critical for maintaining a conserved individual conduit threshold for embolism when little pre-existing embolism is present, as the percentage of embolized conduits increases, gas movement, local pressure differences and connectivity between conduits increasingly contribute to embolism spread.


Assuntos
Embolia , Magnoliopsida , Desidratação , Água , Xilema
5.
J Exp Bot ; 73(12): 4147-4156, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35312771

RESUMO

Auxins are known to regulate xylem development in plants, but their effects on water transport efficiency are poorly known. Here we used tomato plants with the diageotropica mutation (dgt), which has impaired function of a cyclophilin 1 cis-trans isomerase involved in auxin signaling, and the corresponding wild type (WT) to explore the mutation's effects on plant hydraulics and leaf gas exchange. The xylem of the dgt mutant showed a reduced hydraulically weighted vessel diameter (Dh) (24-43%) and conduit number (25-58%) in petioles and stems, resulting in lower theoretical hydraulic conductivities (Kt); on the other hand, no changes in root Dh and Kt were observed. The measured stem and leaf hydraulic conductances of the dgt mutant were lower (up to 81%), in agreement with the Kt values; however, despite dgt and WT plants showing similar root Dh and Kt, the measured root hydraulic conductance of the dgt mutant was 75% lower. The dgt mutation increased the vein and stomatal density, which could potentially increase photosynthesis. Nevertheless, even though it had the same photosynthetic capacity as WT plants, the dgt mutant showed a photosynthetic rate c. 25% lower, coupled with a stomatal conductance reduction of 52%. These results clearly demonstrate that increases in minor vein and stomatal density only result in higher leaf gas exchange when accompanied by higher hydraulic efficiency.


Assuntos
Fotossíntese , Água , Ácidos Indolacéticos , Folhas de Planta/fisiologia , Água/fisiologia , Xilema/fisiologia
6.
Plant Physiol ; 182(1): 547-554, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624082

RESUMO

The driver of leaf mortality during drought stress is a critical unknown. We used the commercially important tree Persea americana, in which there is a large variation in the degree of drought-induced leaf death across the canopy, to test whether embolism formation in the xylem during drought drives this leaf mortality. A large range in the number of embolized vessels in the petioles of leaves was observed across the canopy of plants that had experienced drought. Despite considerable variation between leaves, the amount of embolized vessels in the xylem of the petiole strongly correlated with area of drought-induced tissue death in individual leaves. Consistent with this finding was a large interleaf variability in xylem resistance to embolism, with a 1.45 MPa variation in the water potential at which 50% of the xylem in the leaf midrib embolized across leaves. Our results implicate xylem embolism as a driver of leaf mortality during drought. Moreover, we propose that heterogeneity in drought-induced leaf mortality across a canopy is caused by high interleaf variability in xylem resistance to embolism, which may act as a buffer against complete canopy death during prolonged drought in P. americana.


Assuntos
Persea/metabolismo , Persea/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Xilema/metabolismo , Xilema/fisiologia , Secas , Transpiração Vegetal/fisiologia
7.
Physiol Plant ; 172(4): 2142-2152, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33942915

RESUMO

Xylem resistance to embolism is a key metric determining plant survival during drought. Yet, we have a limited understanding of the degree of plasticity in vulnerability to embolism. Here, we tested whether light availability influences embolism resistance in leaves and stems. The optical vulnerability method was used to assess stem and leaf resistance to embolism in Phellodendron amurense and Ilex verticillata acclimated to sun and shade microenvironments within the same canopy. In both species, we found considerable segmentation in xylem resistance to embolism between leaves and stems, but only minor acclimation in response to light availability. With the addition of a third species, Betula pubescens, which shows no vulnerability segmentation, we sought to investigate xylem anatomical traits that might correlate with strong vulnerability segmentation. We found a correlation between the area fraction of vessels in the xylem and embolism resistance across species and tissue types. Our results suggest that minimal acclimation of embolism resistance occurs in response to light environment in the same individual and that the degree of vulnerability segmentation between leaves and stems might be determined by the vessel lumen fraction of the xylem.


Assuntos
Embolia , Xilema , Betula , Secas , Folhas de Planta , Caules de Planta , Água
8.
New Phytol ; 227(6): 1804-1817, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32386326

RESUMO

Lycophytes are the earliest diverging extant lineage of vascular plants, sister to all other vascular plants. Given that most species are adapted to ever-wet environments, it has been hypothesized that lycophytes, and by extension the common ancestor of all vascular plants, have few adaptations to drought. We investigated the responses to drought of key fitness-related traits such as stomatal regulation, shoot hydraulic conductance (Kshoot ) and stem xylem embolism resistance in Selaginella haematodes and S. pulcherrima, both native to tropical understory. During drought stomata in both species were found to close before declines in Kshoot , with a 50% loss of Kshoot occurring at -1.7 and -2.5 MPa in S. haematodes and S. pulcherrima, respectively. Direct observational methods revealed that the xylem of both species was resistant to embolism formation, with 50% of embolized xylem area occurring at -3.0 and -4.6 MPa in S. haematodes and S. pulcherrima, respectively. X-ray microcomputed tomography images of stems revealed that the decline in Kshoot occurred with the formation of an air-filled lacuna, disconnecting the central vascular cylinder from the cortex. We propose that embolism-resistant xylem and large capacitance, provided by collapsing inner cortical cells, is essential for Selaginella survival during water deficit.


Assuntos
Embolia , Selaginellaceae , Secas , Folhas de Planta , Caules de Planta , Água , Microtomografia por Raio-X , Xilema
9.
Plant Physiol ; 179(2): 533-543, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30538169

RESUMO

Stomatal responses to changes in leaf water status are important for the diurnal regulation of gas exchange and the survival of plants during drought. These stomatal responses in angiosperm species are well characterized, yet in species of nonseed plants, an ongoing debate surrounds the role of metabolism, particularly the role of the hormone abscisic acid (ABA), in functionally regulating stomatal responses to changes in leaf water status. Here, we measured the stomatal response to changes in vapor pressure difference (VPD) in two natural forms of the fern species Athyrium filix-femina, recently suggested to have stomata that are regulated by ABA. The two forms measured had considerable differences in key hydraulic traits, including leaf hydraulic conductance and capacitance, as well as the kinetics of stomatal response to changes in VPD. In both forms, the stomatal responses to VPD could be accurately predicted by a dynamic, mechanistic model that assumes guard cell turgor changes in concert with leaf turgor in the light, and not via metabolic processes including the level of ABA. During drought, endogenous ABA did not play a role in stomatal closure, and exogenous ABA applied to live, intact leaves did not induce stomatal closure. Our results indicate that functional stomatal responses to changes in leaf water status in ferns are regulated by leaf hydraulics and not metabolism. With ferns being sister to seed plants, this result has implications for the evolutionary reconstruction of functional stomatal responses across vascular land plant lineages.


Assuntos
Gleiquênias/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Secas , Gleiquênias/efeitos dos fármacos , Modelos Biológicos , Estômatos de Plantas/efeitos dos fármacos , Pressão de Vapor
10.
Plant Physiol ; 193(3): 1729-1731, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37607252
12.
New Phytol ; 219(4): 1224-1234, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761509

RESUMO

Investment in leaf veins (supplying xylem water) is balanced by stomatal abundance, such that sufficient water transport is provided for stomata to remain open when soil water is abundant. This coordination is mediated by a common dependence of vein and stomatal densities on cell size. Flowers may not conform to this same developmental pattern if they depend on water supplied by the phloem or have high rates of nonstomatal transpiration. We examined the relationships between veins, stomata and epidermal cells in leaves, sepals and petals of 27 angiosperms to determine whether common spacing rules applied to all tissues. Regression analysis found no evidence for different relationships within organ types. Both vein and stomatal densities were strongly associated with epidermal cell size within organs, but, for a given epidermal cell size, petals had fewer veins and stomata than sepals, which had fewer than leaves. Although our data support the concept of common scaling between veins and stomata in leaves and flowers, the large diversity in petal vein density suggests that, in some species, petal veins may be engaged in additional functions, such as the supply of water for high cuticular transpiration or for phloem delivery of water or carbohydrates.


Assuntos
Flores/anatomia & histologia , Folhas de Planta/anatomia & histologia , Feixe Vascular de Plantas/anatomia & histologia , Tamanho Celular , Filogenia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia
13.
Plant Physiol ; 190(2): 1080-1082, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35863057

Assuntos
Plantas , Solo
15.
Plant Cell Environ ; 41(11): 2567-2576, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29748980

RESUMO

The xylem cavitation threshold water potential establishes a hydraulic limit on the ability of woody species to survive in water-limiting environments, but herbs may be more plastic in terms of their ability to adapt to drying conditions. Here, we examined the capacity of sunflower (Helianthus annuus L.) leaves to adapt to reduced water availability by modifying the sensitivity of xylem and stomata to soil water deficit. We found that sunflower plants grown under water-limited conditions significantly adjusted leaf osmotic potential, which was linked to a prolongation of stomatal opening as soil dried and a reduced sensitivity of photosynthesis to water-stress-induced damage. At the same time, the vulnerability of midrib xylem to water-stress-induced cavitation was observed to be highly responsive to growth conditions, with water-limited plants producing conduits with thicker cell walls which were more resistant to xylem cavitation. Coordinated plasticity in osmotic potential and xylem vulnerability enabled water-limited sunflowers to safely extract water from the soil, while protecting leaf xylem against embolism. High plasticity in sunflower xylem contrasts with data from woody plants and may suggest an alternative strategy in herbs.


Assuntos
Helianthus/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Desidratação , Estômatos de Plantas/metabolismo , Transpiração Vegetal , Xilema/metabolismo
16.
J Exp Bot ; 69(5): 1261-1267, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29340606

RESUMO

Rapid biosynthesis of abscisic acid (ABA) in the leaf, triggered by a decrease in cell volume, is essential for a functional stomatal response. However, it is not known whether rapid biosynthesis of ABA is also triggered in other plant tissues. Through the application of external pressure to flower, root, and leaf tissues, we test whether a reduction in cell volume can trigger rapid increases in ABA levels across the plant body in two species, Solanum lycopersicum and Passiflora tarminiana. Our results show that, in contrast to rapid ABA synthesis in the leaf, flower and root tissue did not show a significant, increase in ABA level in response to a drop in cell volume over a short time frame, suggesting that rapid ABA biosynthesis occurs only in leaf, not in flower or root tissues. A gene encoding the key, rate-limiting carotenoid cleavage enzyme (9-cis-epoxycarotenoid dioxygenase, NCED) in the ABA biosynthetic pathway in S. lycopersicum, NCED1, was upregulated to a lesser degree in flowers and roots compared with leaves in response to applied pressure. In both species, floral tissues contained substantially lower levels of the NCED substrate 9'-cis-neoxanthin than leaves, and this ABA precursor could not be detected in roots. Slow and minimal ABA biosynthesis was detected after 2 h in petals, indicating that floral tissue is capable of synthesizing ABA in response to sustained water deficit. Our results indicate that rapid ABA biosynthesis predominantly occurs in the leaves, and not in other tissues.


Assuntos
Ácido Abscísico/biossíntese , Passiflora/metabolismo , Folhas de Planta/fisiologia , Solanum lycopersicum/metabolismo , Flores/fisiologia , Raízes de Plantas/fisiologia , Pressão
17.
Am J Bot ; 105(12): 1967-1974, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30475383

RESUMO

PREMISE OF THE STUDY: The densities of veins and stomata govern leaf water supply and gas exchange. They are coordinated to avoid overproduction of either veins or stomata. In many species, where leaf area is greater at low light, this coordination is primarily achieved through differential cell expansion, resulting in lower stomatal and vein density in larger leaves. This mechanism would, however, create highly inefficient leaves in species in which leaf area is greater at high light. Here we investigate the role of cell expansion and differentiation as regulators of vein and stomatal density in Rheum rhabarbarum, which produces large leaves under high light. METHODS: Rheum rhabarbarum plants were grown under full sunlight and 7% of full sunlight. Leaf area, stomatal density, and vein density were measured from leaves harvested at different intervals. KEY RESULTS: Leaves of R. rhabarbarum expanded at high light were six times larger than leaves expanded at low light, yet vein and stomatal densities were similar. In high light-expanded leaves, minor veins were continuously initiated as the leaves expanded, while an extended period of stomatal initiation, compared to leaves expanded at low light, occurred early in leaf development. CONCLUSIONS: We demonstrate that R. rhabarbarum adjusts the initiation of stomata and minor veins at high light, allowing for the production of larger leaves uncoupled from lower vein and stomatal densities. We also present evidence for an independent control of vein and stomatal initiation, suggesting that this adjustment must involve some unknown developmental mechanism.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/crescimento & desenvolvimento , Rheum/crescimento & desenvolvimento , Folhas de Planta/citologia , Rheum/citologia , Rheum/efeitos da radiação , Luz Solar
18.
An Acad Bras Cienc ; 90(2): 1625-1641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29898112

RESUMO

The physical, physiological and biochemical changes during the development until the dispersal of rubber tree seeds were evaluated with the purpose of estimating the point at physiological maturity. A total of 30 plants were selected at different points in a commercial planting area and had their flowers marked during the anthesis and every 15 days after marking. Fruits and seeds were collected for analysis of moisture content, dry matter, diameter and length. Details of the anatomy ultra-structure of the seeds were evaluated. The seed emergence, emergency speed index, heat resistant proteins and oxidative stress enzymes were examined. It was observed that fruits reached maximum size at 120 days after anthesis and seeds at 150 days. The seeds acquired germination capacity after 150 days. At 175 days, they presented the highest percentage of dry matter and lowest moisture, in addition to a higher percentage of germination and vigor. Therefore, it was possible to conclude that the physiological maturity of the rubber tree seeds occurs at 175 days after anthesis, and coincides with its maximum physiological quality. At 175 and 180 days post-anthesis, there is a greater expression of heat resistant proteins as well as low molecular weight and greater oxidative stress enzyme activity.


Assuntos
Frutas/fisiologia , Hevea/fisiologia , Sementes/fisiologia , Brasil , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Germinação/fisiologia , Proteínas de Choque Térmico/metabolismo , Hevea/anatomia & histologia , Hevea/crescimento & desenvolvimento , Hevea/metabolismo , Peso Molecular , Estresse Oxidativo , Plântula/fisiologia , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
20.
An Acad Bras Cienc ; 87(1): 331-493, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25714078

RESUMO

Hepatic encephalopathy (HE) encompasses a variety of neuropsychiatric symptoms, including anxiety and psychomotor dysfunction. Although HE is a frequent complication of liver cirrhosis, the neurobiological substrates responsible for its clinical manifestations are largely unclear. In the present study, male Wistar rats were bile duct-ligated (BDL), a procedure which induces liver cirrhosis, and on the 21st day after surgery tested in the elevated plus-maze (EPM) and in an open field for anxiety and locomotor activity measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to better understand the neurobiological alterations present in BDL animals. Plasma levels of ammonia were quantified and histopathological analysis of the livers was performed. BDL rats showed a significant decrease in the percentage of entries and time spent in the open arms of the EPM, an anxiogenic effect. These animals also presented significant decreases in Fos-ir in the lateral septal nucleus and medial amygdalar nucleus. Their ammonia plasma levels were significantly higher when compared to the sham group and the diagnosis of cirrhosis was confirmed by histopathological analysis. These results indicate that the BDL model induces anxiogenic results, possibly related to changes in the activation of anxiety-mediating circuitries and to increases in ammonia plasma levels.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Química Encefálica/fisiologia , Cirrose Hepática/fisiopatologia , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Amônia/sangue , Animais , Ductos Biliares/cirurgia , Modelos Animais de Doenças , Imuno-Histoquímica , Ligadura , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA