Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Histochem Cell Biol ; 162(1-2): 109-131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758428

RESUMO

The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.


Assuntos
DNA , DNA/química , Humanos , Cromossomos/metabolismo , Cromossomos/química , Cromatina/química , Cromatina/metabolismo
2.
Nucleic Acids Res ; 50(21): e125, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36189882

RESUMO

The reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells. We immobilize GFP-fused proteins of interest at a distinct cellular structure and detect their ubiquitination state with red fluorescent ubiquitin binders. With this ubiquitin fluorescent three-hybrid (ubiF3H) assay we identified HP1ß as a novel ubiquitination target of UHRF1. The use of linkage specific ubiquitin binding domains enabled the discrimination of K48 and K63 linked protein ubiquitination. To enhance signal-to-noise ratio, we implemented fluorescence complementation (ubiF3Hc) with split YFP. Using in addition a cell cycle marker we could show that HP1ß is mostly ubiquitinated by UHRF1 during S phase and deubiquitinated by the protease USP7. With this complementation assay we could also directly detect the ubiquitination of the tumor suppressor p53 and monitor its inhibition by the anti-cancer drug Nutlin-3. Altogether, we demonstrate the utility of the ubiF3H assay to probe the ubiquitination of specific proteins and to screen for ligases, proteases and small molecules controlling this posttranslational modification.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Nucleic Acids Res ; 49(18): e107, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313753

RESUMO

RNA-protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA-protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA-protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA-protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA-protein interactions in living cells.


Assuntos
RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Cricetinae , Células HeLa , Humanos , Camundongos , Ligação Proteica , Células-Tronco
4.
Nucleic Acids Res ; 49(22): 12870-12894, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133727

RESUMO

DNA base modifications diversify the genome and are essential players in development. Yet, their influence on DNA physical properties and the ensuing effects on genome metabolism are poorly understood. Here, we focus on the interplay of cytosine modifications and DNA processes. We show by a combination of in vitro reactions with well-defined protein compositions and conditions, and in vivo experiments within the complex networks of the cell that cytosine methylation stabilizes the DNA helix, increasing its melting temperature and reducing DNA helicase and RNA/DNA polymerase speed. Oxidation of methylated cytosine, however, reverts the duplex stabilizing and genome metabolic effects to the level of unmodified cytosine. We detect this effect with DNA replication and transcription proteins originating from different species, ranging from prokaryotic and viral to the eukaryotic yeast and mammalian proteins. Accordingly, lack of cytosine methylation increases replication fork speed by enhancing DNA helicase unwinding speed in cells. We further validate that this cannot simply be explained by altered global DNA decondensation, changes in histone marks or chromatin structure and accessibility. We propose that the variegated deposition of cytosine modifications along the genome regulates DNA helix stability, thereby providing an elementary mechanism for local fine-tuning of DNA metabolism.


Assuntos
Citosina/metabolismo , Replicação do DNA/genética , DNA/genética , DNA/metabolismo , Animais , Pareamento de Bases/genética , Ciclo Celular/genética , Linhagem Celular , Células Cultivadas , Citosina/química , DNA/química , DNA Helicases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Instabilidade Genômica/genética , Células HEK293 , Humanos , Hibridização in Situ Fluorescente/métodos , Metilação , Camundongos , Microscopia Confocal
5.
Nucleic Acids Res ; 49(13): 7406-7423, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34214177

RESUMO

Heterochromatin binding protein HP1ß plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1ß-/- embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1ß is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1ß-/- and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1-/- cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Heterocromatina/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Caseína Quinase II/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cricetinae , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Humanos , Camundongos , Fosforilação , Serina/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/fisiologia
6.
RNA ; 26(10): 1489-1506, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32636310

RESUMO

Chemical modifications are found on almost all RNAs and affect their coding and noncoding functions. The identification of m6A on mRNA and its important role in gene regulation stimulated the field to investigate whether additional modifications are present on mRNAs. Indeed, modifications including m1A, m5C, m7G, 2'-OMe, and Ψ were detected. However, since their abundances are low and tools used for their corroboration are often not well characterized, their physiological relevance remains largely elusive. Antibodies targeting modified nucleotides are often used but have limitations such as low affinity or specificity. Moreover, they are not always well characterized and due to the low abundance of the modification, particularly on mRNAs, generated data sets might resemble noise rather than specific modification patterns. Therefore, it is critical that the affinity and specificity is rigorously tested using complementary approaches. Here, we provide an experimental toolbox that allows for testing antibody performance prior to their use.


Assuntos
Anticorpos/genética , Ribonucleotídeos/genética , Nucleotídeos/genética , RNA/genética , RNA Mensageiro/genética
7.
Nucleic Acids Res ; 48(22): 12751-12777, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264404

RESUMO

To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.


Assuntos
Replicação do DNA/genética , Heterocromatina/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Centrômero/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Y/genética , Genoma/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fase S/genética , Imagem Individual de Molécula
8.
Proc Natl Acad Sci U S A ; 116(13): 6111-6119, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850548

RESUMO

Microrchidia 3 (MORC3) is a human protein linked to autoimmune disorders, Down syndrome, and cancer. It is a member of a newly identified family of human ATPases with an uncharacterized mechanism of action. Here, we elucidate the molecular basis for inhibition and activation of MORC3. The crystal structure of the MORC3 region encompassing the ATPase and CW domains in complex with a nonhydrolyzable ATP analog demonstrates that the two domains are directly coupled. The extensive ATPase:CW interface stabilizes the protein fold but inhibits the catalytic activity of MORC3. Enzymatic, NMR, mutational, and biochemical analyses show that in the autoinhibited, off state, the CW domain sterically impedes binding of the ATPase domain to DNA, which in turn is required for the catalytic activity. MORC3 autoinhibition is released by disrupting the intramolecular ATPase:CW coupling through the competitive interaction of CW with histone H3 tail or by mutating the interfacial residues. Binding of CW to H3 leads to a marked rearrangement in the ATPase-CW cassette, which frees the DNA-binding site in active MORC3 (on state). We show that ATP-induced dimerization of the ATPase domain is strictly required for the catalytic activity and that the dimeric form of ATPase-CW might cooperatively bind to dsDNA. Together, our findings uncovered a mechanism underlying the fine-tuned regulation of the catalytic domain of MORC3 by the epigenetic reader, CW.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Catálise , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Ativação Enzimática , Polarização de Fluorescência , Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética
9.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409255

RESUMO

CTCF is a nuclear protein initially discovered for its role in enhancer-promoter insulation. It has been shown to play a role in genome architecture and in fact, its DNA binding sites are enriched at the borders of chromatin domains. Recently, we showed that depletion of CTCF impairs the DNA damage response to ionizing radiation. To investigate the relationship between chromatin domains and DNA damage repair, we present here clonogenic survival assays in different cell lines upon CTCF knockdown and ionizing irradiation. The application of a wide range of ionizing irradiation doses (0-10 Gy) allowed us to investigate the survival response through a biophysical model that accounts for the double-strand breaks' probability distribution onto chromatin domains. We demonstrate that the radiosensitivity of different cell lines is increased upon lowering the amount of the architectural protein. Our model shows that the deficiency in the DNA repair ability is related to the changes in the size of chromatin domains that occur when different amounts of CTCF are present in the nucleus.


Assuntos
Cromatina , Dano ao DNA , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sobrevivência Celular/genética , Cromatina/genética , DNA/metabolismo
10.
Chembiochem ; 22(7): 1205-1209, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33207032

RESUMO

Antibody conjugates have taken a great leap forward as tools in basic and applied molecular life sciences that was enabled by the development of chemoselective reactions for the site-specific modification of proteins. Antibody-oligonucleotide conjugates combine the antibody's target specificity with the reversible, sequence-encoded binding properties of oligonucleotides like DNAs or peptide nucleic acids (PNAs), allowing sequential imaging of large numbers of targets in a single specimen. In this report, we use the Tub-tag® technology in combination with Cu-catalyzed azide-alkyne cycloaddition for the site-specific conjugation of single DNA and PNA strands to an eGFP-binding nanobody. We show binding of the conjugate to recombinant eGFP and subsequent sequence-specific annealing of fluorescently labelled imager strands. Furthermore, we reversibly stain eGFP-tagged proteins in human cells, thus demonstrating the suitability of our conjugation strategy to generate antibody-oligonucleotides for reversible immunofluorescence imaging.


Assuntos
DNA/química , Fragmentos de Imunoglobulinas/química , Microscopia de Fluorescência , Ácidos Nucleicos Peptídicos/química , Alcinos/química , Azidas/química , Catálise , Linhagem Celular , Cobre/química , Reação de Cicloadição , Proteínas de Fluorescência Verde/química , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Anticorpos de Domínio Único/química
11.
Nucleic Acids Res ; 46(12): 6112-6128, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750270

RESUMO

The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.


Assuntos
Período de Replicação do DNA , Heterocromatina , Código das Histonas , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , DNA/análise , Inativação Gênica , Histonas/metabolismo , Metilação , Camundongos , Lâmina Nuclear/ultraestrutura , Poro Nuclear/ultraestrutura , Fase S/genética
13.
Nucleic Acids Res ; 45(12): 7118-7136, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28449087

RESUMO

Cytosine modifications diversify and structure the genome thereby controlling proper development and differentiation. Here, we focus on the interplay of the 5-methylcytosine reader Mbd1 and modifier Tet1 by analyzing their dynamic subcellular localization and the formation of the Tet oxidation product 5-hydroxymethylcytosine in mammalian cells. Our results demonstrate that Mbd1 enhances Tet1-mediated 5-methylcytosine oxidation. We show that this is due to enhancing the localization of Tet1, but not of Tet2 and Tet3 at heterochromatic DNA. We find that the recruitment of Tet1 and concomitantly its catalytic activity eventually leads to the displacement of Mbd1 from methylated DNA. Finally, we demonstrate that increased Tet1 heterochromatin localization and 5-methylcytosine oxidation are dependent on the CXXC3 domain of Mbd1, which recognizes unmethylated CpG dinucleotides. The Mbd1 CXXC3 domain deletion isoform, which retains only binding to methylated CpGs, on the other hand, blocks Tet1-mediated 5-methylcytosine to 5-hydroxymethylcytosine conversion, indicating opposite biological effects of Mbd1 isoforms. Our study provides new insights on how cytosine modifications, their modifiers and readers cross-regulate themselves.


Assuntos
Ilhas de CpG , Proteínas de Ligação a DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica , Heterocromatina/metabolismo , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Linhagem Celular , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Heterocromatina/química , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Oxigenases de Função Mista/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Oxirredução , Domínios Proteicos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Vermelha Fluorescente
14.
Nucleic Acids Res ; 45(5): 2438-2457, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27923996

RESUMO

Aberrant DNA methylation is a hallmark of various human disorders, indicating that the spatial and temporal regulation of methylation readers and modifiers is imperative for development and differentiation. In particular, the cross-regulation between 5-methylcytosine binders (MBD) and modifiers (Tet) has not been investigated. Here, we show that binding of Mecp2 and Mbd2 to DNA protects 5-methylcytosine from Tet1-mediated oxidation. The mechanism is not based on competition for 5-methylcytosine binding but on Mecp2 and Mbd2 directly restricting Tet1 access to DNA. We demonstrate that the efficiency of this process depends on the number of bound MBDs per DNA molecule. Accordingly, we find 5-hydroxymethylcytosine enriched at heterochromatin of Mecp2-deficient neurons of a mouse model for Rett syndrome and Tet1-induced reexpression of silenced major satellite repeats. These data unveil fundamental regulatory mechanisms of Tet enzymes and their potential pathophysiological role in Rett syndrome. Importantly, it suggests that Mecp2 and Mbd2 have an essential physiological role as guardians of the epigenome.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Células Cultivadas , DNA/química , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Ratos , Síndrome de Rett/metabolismo , Transcrição Gênica
15.
Angew Chem Int Ed Engl ; 58(34): 11625-11630, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-30828930

RESUMO

We describe a new technique in protein synthesis that extends the existing repertoire of methods for protein modification: A chemoselective reaction that induces reactivity for a subsequent bioconjugation. An azide-modified building block reacts first with an ethynylphosphonite through a Staudinger-phosphonite reaction (SPhR) to give an ethynylphosphonamidate. The resulting electron-deficient triple bond subsequently undergoes a cysteine-selective reaction with proteins or antibodies. We demonstrate that ethynylphosphonamidates display excellent cysteine-selective reactivity combined with superior stability of the thiol adducts, when compared to classical maleimide linkages. This turns our technique into a versatile and powerful tool for the facile construction of stable functional protein conjugates.


Assuntos
Antineoplásicos Imunológicos/química , Cisteína/química , Imunoconjugados/metabolismo , Organofosfonatos/química , Receptor ErbB-2/imunologia , Compostos de Sulfidrila/química , Trastuzumab/química , Antineoplásicos Imunológicos/metabolismo , Cisteína/metabolismo , Humanos , Imunoconjugados/química , Iodoacetamida/química , Iodoacetamida/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Organofosfonatos/metabolismo , Compostos de Sulfidrila/metabolismo , Trastuzumab/metabolismo
16.
J Biol Chem ; 291(10): 4873-81, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26772194

RESUMO

The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1(-/-) compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function.


Assuntos
Cromatina/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cromatina/metabolismo , Células HEK293 , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Mutação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Ratos , Células Sf9 , Spodoptera
17.
Hum Mol Genet ; 23(22): 5950-60, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986920

RESUMO

Ribonuclease H2 plays an essential role for genome stability as it removes ribonucleotides misincorporated into genomic DNA by replicative polymerases and resolves RNA/DNA hybrids. Biallelic mutations in the genes encoding the three RNase H2 subunits cause Aicardi-Goutières syndrome (AGS), an early-onset inflammatory encephalopathy that phenotypically overlaps with the autoimmune disorder systemic lupus erythematosus. Here we studied the intracellular dynamics of RNase H2 in living cells during DNA replication and in response to DNA damage using confocal time-lapse imaging and fluorescence cross-correlation spectroscopy. We demonstrate that the RNase H2 complex is assembled in the cytosol and imported into the nucleus in an RNase H2B-dependent manner. RNase H2 is not only recruited to DNA replication foci, but also to sites of PCNA-dependent DNA repair. By fluorescence recovery after photobleaching, we demonstrate a high mobility and fast exchange of RNase H2 at sites of DNA repair and replication. We provide evidence that recruitment of RNase H2 is not only PCNA-dependent, mediated by an interaction of the B subunit with PCNA, but also PCNA-independent mediated via the catalytic domain of the A subunit. We found that AGS-associated mutations alter complex formation, recruitment efficiency and exchange kinetics at sites of DNA replication and repair suggesting that impaired ribonucleotide removal contributes to AGS pathogenesis.


Assuntos
Doenças Autoimunes do Sistema Nervoso/enzimologia , Dano ao DNA , Replicação do DNA , Malformações do Sistema Nervoso/enzimologia , Ribonuclease H/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Citosol/enzimologia , Humanos , Malformações do Sistema Nervoso/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Multimerização Proteica , Transporte Proteico , Ribonuclease H/química , Ribonuclease H/genética
18.
Nucleic Acids Res ; 42(13): 8433-48, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24939902

RESUMO

The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.


Assuntos
Proteína de Ligação a CREB/metabolismo , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Proteína de Ligação a CREB/química , Células Cultivadas , Cromatina/metabolismo , DNA/biossíntese , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Mutação , Antígeno Nuclear de Célula em Proliferação/genética
19.
Nucleic Acids Res ; 42(10): 6405-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753410

RESUMO

Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity.


Assuntos
DNA/biossíntese , Histonas/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/química , Dano ao DNA , Reparo do DNA , Replicação do DNA , Feminino , Variação Genética , Histonas/análise , Histonas/genética , Humanos , Camundongos
20.
Biophys J ; 109(8): 1551-64, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488646

RESUMO

Fluorescence recovery after photobleaching (FRAP) is an excellent tool to measure the chemical rate constants of fluorescently labeled proteins in living cells. Usually FRAP experiments are conducted with the protein concentrations being in a steady state, i.e., when the association and dissociation of the proteins are equilibrated. This is a strong limitation because situations in which rate constants change with time are of great scientific interest. In this study, we present an approach in which FRAP is used shortly after DNA damage introducing laser microirradiation, which results in the recruitment of the DNA clamp protein proliferating cell nuclear antigen (PCNA) to DNA lesions. We establish different kinetic models that are compatible with the observed PCNA recruitment data if FRAP is not used. By using FRAP at different time points during protein accumulation, we can not only exclude two out of three models, but we can also determine the rate constants with increased reliability. This study thus demonstrates the feasibility of using FRAP during protein recruitment and its application in the discrimination of possible kinetic models.


Assuntos
Dano ao DNA/fisiologia , Dano ao DNA/efeitos da radiação , Recuperação de Fluorescência Após Fotodegradação/métodos , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estudos de Viabilidade , Fluorescência , Células HeLa , Humanos , Cinética , Lasers , Microscopia Confocal/métodos , Fotodegradação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA