Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 7(9): 2556-2566, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001874

RESUMO

Luminometer and imaging systems are used to detect and quantify low light produced by a broad range of bioluminescent proteins. Despite their everyday use in research, such instruments are costly and lack the flexibility to accommodate the variety of bioluminescence experiment formats that may require top or bottom signal acquisition, high or medium sensitivity, or multiple wavelength detection. To address the growing need for versatile technologies, we developed a highly customizable bioluminescence imager called Biolum' RGB that uses a consumer color digital camera with a high-aperture lens mounted at the bottom or top of a 3D-printed dark chamber and can quantify bioluminescence emission from cells grown in 384-well microplates and Petri dishes. Taking advantage of RGB detectors, Biolum' RGB can distinguish spectral signatures from various bioluminescence probes and quantify bioluminescence resonant energy transfer occurring during protein-protein interaction events. Although Biolum' RGB can be used with any smartphone, in particular for low bioluminescence signals, we recommend the use of recent digital cameras which offer better sensitivity and high signal/noise ratio. Altogether, Biolum' RGB combines the benefits of a plate reader and imager while providing better image resolution and faster acquisition speed, and as such, it offers an exciting alternative for any laboratory looking for a versatile, low-cost bioluminescence imaging instrument.


Assuntos
Diagnóstico por Imagem , Smartphone , Proteínas Luminescentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA