Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Ecol ; 32(7): 1656-1672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36560895

RESUMO

Coral reef fishes are diverse in ecology and behaviour and show remarkable colour variability. Investigating the visual pigment gene (opsin) expression in these fishes makes it possible to associate their visual genotype and phenotype (spectral sensitivities) to visual tasks, such as feeding strategy or conspecific detection. By studying all major damselfish clades (Pomacentridae) and representatives from five other coral reef fish families, we show that the long-wavelength-sensitive (lws) opsin is highly expressed in algivorous and less or not expressed in zooplanktivorous species. Lws is also upregulated in species with orange/red colours (reflectance >520 nm) and expression is highest in orange/red-coloured algivores. Visual models from the perspective of a typical damselfish indicate that sensitivity to longer wavelengths does enhance the ability to detect the red to far-red component of algae and orange/red-coloured conspecifics, possibly enabling social signalling. Character state reconstructions indicate that in the early evolutionary history of damselfishes, there was no lws expression and no orange/red coloration. Omnivory was most often the dominant state. Although herbivory was sometimes dominant, zooplanktivory was never dominant. Sensitivity to long wavelength (increased lws expression) only emerged in association with algivory but never with zooplanktivory. Higher lws expression is also exploited by social signalling in orange/red, which emerged after the transition to algivory. Although the relative timing of traits may deviate by different reconstructions and alternative explanations are possible, our results are consistent with sensory bias whereby social signals evolve as a correlated response to natural selection on sensory system properties in other contexts.


Assuntos
Recifes de Corais , Peixes , Animais , Peixes/genética , Opsinas/genética , Opsinas/metabolismo , Expressão Gênica , Comunicação
2.
Semin Cell Dev Biol ; 106: 43-52, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439270

RESUMO

The family Cichlidae contains approximately 2000 species that live in diverse freshwater habitats including murky lakes, turbid rivers, and clear lakes from both the Old and New Worlds. Their visual systems are similarly diverse and have evolved specific sensitivities that differ along several axes of variation. Variation in cornea and lens transmission affect which wavelengths reach the retina. Variation in photoreceptor number and distribution affect brightness sensitivity, spectral sensitivity and resolution. Probably their most dynamic characteristic is the variation in visual pigment peak sensitivities. Visual pigments can be altered through changes in chromophore, opsin sequence and opsin expression. Opsin expression varies by altering which of the seven available cone opsins in their genomes are turned on. These opsins can even be coexpressed to produce seemingly infinitely tunable cone sensitivities. Both chromophore and opsin expression can vary on either rapid (hours or days), slower (seasonal or ontogenetic) or evolutionary timescales. Such visual system shifts have enabled cichlids to adapt to different habitats and foraging styles. Through both short term plasticity and longer evolutionary adaptations, cichlids have proven to be ecologically successful and an excellent model for studying organismal adaptation.


Assuntos
Ciclídeos/metabolismo , Expressão Gênica/genética , Opsinas/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Animais
3.
Mol Biol Evol ; 37(7): 2002-2014, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191319

RESUMO

Sensory systems are tuned by selection to maximize organismal fitness in particular environments. This tuning has implications for intraspecies communication, the maintenance of species boundaries, and speciation. Tuning of color vision largely depends on the sequence of the expressed opsin proteins. To improve tuning of visual sensitivities to shifts in habitat or foraging ecology over the course of development, many organisms change which opsins are expressed. Changes in this developmental sequence (heterochronic shifts) can create differences in visual sensitivity among closely related species. The genetic mechanisms by which these developmental shifts occur are poorly understood. Here, we use quantitative trait locus analyses, genome sequencing, and gene expression studies in African cichlid fishes to identify a role for the transcription factor Tbx2a in driving a switch between long wavelength sensitive (LWS) and Rhodopsin-like (RH2) opsin expression. We identify binding sites for Tbx2a in the LWS promoter and the highly conserved locus control region of RH2 which concurrently promote LWS expression while repressing RH2 expression. We also present evidence that a single change in Tbx2a regulatory sequence has led to a species difference in visual tuning, providing the first mechanistic model for the evolution of rapid switches in sensory tuning. This difference in visual tuning likely has important roles in evolution as it corresponds to differences in diet, microhabitat choice, and male nuptial coloration.


Assuntos
Ciclídeos/metabolismo , Evolução Molecular , Opsinas/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Células HEK293 , Humanos , Locos de Características Quantitativas
4.
Mol Ecol ; 29(12): 2234-2253, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32421918

RESUMO

Vision represents an excellent model for studying adaptation, given the genotype-to-phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1 /A2 -chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS- and RH1-duplicates originated from a teleost specific whole-genome duplication as well as characiform-specific duplication events. Both LWS-opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS-paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS-paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1 /A2 -chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.


Assuntos
Caraciformes/genética , Opsinas dos Cones/genética , Evolução Molecular , Duplicação Gênica , Opsinas de Bastonetes/genética , Animais , Filogenia
5.
Mol Ecol ; 29(24): 4956-4969, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049090

RESUMO

African cichlid fishes are a prime model for studying speciation mechanisms. Despite the development of extensive genomic resources, it has been difficult to determine which sources of genetic variation are responsible for cichlid phenotypic variation. One of their most variable phenotypes is visual sensitivity, with some of the largest spectral shifts among vertebrates. These shifts arise primarily from differential expression of seven cone opsin genes. By mapping expression quantitative trait loci (eQTL) in intergeneric crosses of Lake Malawi cichlids, we previously identified four causative genetic variants that correspond to indels in the promoters of either key transcription factors or an opsin gene. In this comprehensive study, we show that these indels are the result of the movement of transposable elements (TEs) that correlate with opsin expression variation across the Malawi flock. In tracking the evolutionary history of these particular indels, we found they are endemic to Lake Malawi, suggesting that these TEs are recently active and are segregating within the Malawi cichlid lineage. However, an independent indel has arisen at a similar genomic location in one locus outside of the Malawi flock. The convergence in TE movement suggests these loci are primed for TE insertion and subsequent deletions. Increased TE mobility may be associated with interspecific hybridization, which disrupts mechanisms of TE suppression. This might provide a link between cichlid hybridization and accelerated regulatory variation. Overall, our study suggests that TEs may be an important driver of key regulatory changes, facilitating rapid phenotypic change and possibly speciation in African cichlids.


Assuntos
Ciclídeos , Opsinas dos Cones , Animais , Ciclídeos/genética , Opsinas dos Cones/genética , Elementos de DNA Transponíveis/genética , Malaui , Opsinas/genética , Filogenia
6.
J Exp Biol ; 223(Pt 8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327561

RESUMO

Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.


Assuntos
Opsinas , Visão Ocular , Animais , Peixes , Opsinas/genética , Pigmentos da Retina , Opsinas de Bastonetes
7.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25186727

RESUMO

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Especiação Genética , Genoma/genética , África Oriental , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica/genética , Genômica , Lagos , MicroRNAs/genética , Filogenia , Polimorfismo Genético/genética
8.
Mol Ecol ; 28(23): 5007-5009, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31749242

RESUMO

Allopatric speciation was originally suggested to be the primary mechanism of animal speciation (Mayr, 1942; Figure 1). During allopatric speciation, populations diverge when gene flow is reduced across significant biogeographic barriers. Sympatric speciation, where species diverge while inhabiting the same location, was thought to be essentially impossible. However, the advent of theoretical models followed by new experimental evidence made sympatric speciation more plausible (Via, 2001). The cichlid fishes of Barombi Mbo, a small crater lake in western Cameroon, became one of the most widely accepted examples of sympatric speciation (Schliewen, Tautz, & Paabo, 1994). Although the phylogenetic history of this clade is not quite as simple as originally thought, it remains one of the best examples of sympatric speciation (Richards, Poelstra, & Martin, 2018). However, little is known about the molecular mechanisms contributing to the splitting of these species in situ. In a From the Cover article in this issue of Molecular Ecology, Musilova et al. (2019) focus on the diversity of visual systems among these fishes. They identify genetic changes associated with several aspects of visual adaptation that may have contributed to the ecological specialization and sympatric speciation of cichlids in this lake.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/fisiologia , Especiação Genética , Visão Ocular/fisiologia , Animais , Camarões , Ciclídeos/genética , DNA Mitocondrial/genética , Ecologia , Fluxo Gênico , Genética Populacional , Lagos , Filogenia , Simpatria/genética , Visão Ocular/genética
9.
Mol Ecol ; 28(12): 3025-3041, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30977927

RESUMO

Animal visual systems adapt to environmental light on various timescales. In scotopic conditions, evolutionary time-scale adaptations include spectral tuning to a narrower light spectrum, loss (or inactivation) of visual genes, and pure-rod or rod-dominated retinas. Some fishes inhabiting shallow coral reefs may show activity during the day and at night. It is unclear whether these fishes show adaptations typical of exclusively nocturnal or deep-sea fishes, or of diurnally active shallow-water species. Here, we investigated visual pigment diversity in cardinalfishes (Apogonidae). Most cardinalfishes are nocturnal foragers, yet they aggregate in multispecies groups in and around coral heads during the day, engaging in social and predator avoidance behaviours. We sequenced retinal transcriptomes of 28 species found on the Great Barrier Reef, assessed the diversity of expressed opsin genes and predicted the spectral sensitivities of resulting photopigments using sequence information. Predictions were combined with microspectrophotometry (MSP) measurements in seven cardinalfish species. Retinal opsin expression was rod opsin (RH1) dominated (>87%), suggesting the importance of scotopic vision. However, all species retained expression of multiple cone opsins also, presumably for colour vision. We found five distinct quantitative expression patterns among cardinalfishes, ranging from short-wavelength-shifted to long-wavelength-shifted. These results indicate that cardinalfishes are both well adapted to dim-light conditions and have retained a sophisticated colour vision sense. Other reef fish families also show both nocturnal and diurnal activity while most are strictly one or the other. It will be interesting to compare these behavioural differences across different phylogenetic groups using the criteria and methods developed here.


Assuntos
Evolução Biológica , Opsinas dos Cones/genética , Perciformes/genética , Opsinas de Bastonetes/genética , Aclimatação/genética , Animais , Visão de Cores/genética , Visão de Cores/fisiologia , Recifes de Corais , Expressão Gênica/genética , Luz , Perciformes/fisiologia , Filogenia
10.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399486

RESUMO

Color vision is essential for animals as it allows them to detect, recognize and discriminate between colored objects. Studies analyzing color vision require an integrative approach, combining behavioral experiments, physiological models and quantitative analyses of photoreceptor stimulation. Here, we demonstrate, for the first time, the limits of chromatic discrimination in Metriaclima benetos, a rock-dwelling cichlid from Lake Malawi, using behavioral experiments and visual modeling. Fish were trained to discriminate between colored stimuli. Color discrimination thresholds were quantified by testing fish chromatic discrimination between the rewarded stimulus and distracter stimuli that varied in chromatic distance (ΔS). This was done under fluorescent lights alone and with additional violet lights. Our results provide two main outcomes. First, cichlid color discrimination thresholds correspond with predictions from the receptor noise limited (RNL) model but only if we assume a Weber fraction higher than the typical value of 5%. Second, cichlids may exhibit limited color constancy under certain lighting conditions as most individuals failed to discriminate colors when violet light was added. We further used the color discrimination thresholds obtained from these experiments to model color discrimination of actual fish colors and backgrounds under natural lighting for Lake Malawi. We found that, for M. benetos, blue is most chromatically contrasting against yellows and space-light, which might be important for discriminating male nuptial colorations and detecting males against the background. This study highlights the importance of lab-based behavioral experiments in understanding color vision and in parameterizing the assumptions of the RNL vision model for different species.


Assuntos
Ciclídeos/fisiologia , Percepção de Cores/fisiologia , Visão de Cores , Animais , Lagos , Estimulação Luminosa
11.
J Exp Biol ; 222(Pt 6)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30787138

RESUMO

An adaptive visual system is essential for organisms inhabiting new or changing light environments. The Panama Canal exhibits such variable environments owing to its anthropogenic origin and current human activities. Within the Panama Canal, Lake Gatun harbors several exotic fish species including the invasive peacock bass (Cichla monoculus), a predatory Amazonian cichlid. In this research, through spectral measurements and molecular and physiological experiments, we studied the visual system of C. monoculus and its adaptive capabilities. Our results suggest that (1) Lake Gatun is a highly variable environment, where light transmission changes throughout the canal waterway, and that (2) C. monoculus has several visual adaptations suited for this red-shifted light environment. Cichla monoculus filters short wavelengths (∼400 nm) from the environment through its ocular media and tunes its visual sensitivities to the available light through opsin gene expression. More importantly, based on shifts in spectral sensitivities of photoreceptors alone, and on transcriptome analysis, C. monoculus exhibits extreme intraspecific variation in the use of vitamin A1/A2 chromophore in their photoreceptors. Fish living in turbid water had higher proportions of vitamin A2, shifting sensitivities to longer wavelengths, than fish living in clear water. Furthermore, we also found variation in retinal transcriptomes, where fish from turbid and clear waters exhibited differentially expressed genes that vary greatly in their function. We suggest that this phenotypic plasticity has been key in the invasion success of C. monoculus.


Assuntos
Ciclídeos/fisiologia , Luz , Visão Ocular , Percepção Visual , Animais , Meio Ambiente , Espécies Introduzidas , Lagos , Opsinas/metabolismo , Panamá
12.
BMC Genomics ; 19(1): 945, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563463

RESUMO

BACKGROUND: Dissecting the genetic basis of phenotypic diversity is one of the fundamental goals in evolutionary biology. Despite growing evidence for gene expression divergence being responsible for the evolution of complex traits, knowledge about the proximate genetic causes underlying these traits is still limited. African cichlids have diverse visual systems, with different species expressing different combinations of seven cone opsin genes. Using opsin expression variation in African cichlids as a model for gene expression evolution, this study aims to investigate the genetic architecture of opsin expression divergence in this group. RESULTS: Results from a genome-wide linkage mapping on the F2 progeny of an intergeneric cross, between two species with differential opsin expression show that opsins in Lake Malawi cichlids are controlled by multiple quantitative trait loci (QTLs). Most of these QTLs are located in trans to the opsins except for one cis-QTL for SWS1 on LG17. A closer look at this major QTL revealed the presence of a 691 bp deletion in the promoter of the SWS1 opsin (located 751 bp upstream of the start site) that is associated with a decrease in its expression. Phylogenetic footprinting indicates that the region spanning the deletion harbors a microRNA miR-729 and a conserved non-coding element (CNE) that also occurs in zebrafish and other teleosts. This suggests that the deletion might contain ancestrally preserved regulators that have been tuned for SWS1 gene expression in Lake Malawi. While this deletion is not common, it does occur in several other species within the lake. CONCLUSIONS: Differential expression of cichlid opsins is associated with multiple overlapping QTL, with all but one in trans to the opsins they regulate. The one cis-acting factor is a deletion in the promoter of the SWS1 opsin, suggesting that ancestral polymorphic deletions may contribute to cichlid's visual diversity. In addition to expanding our understanding of the molecular landscape of opsin expression in African cichlids, this study sheds light on the molecular mechanisms underlying phenotypic variation in natural populations.


Assuntos
Ciclídeos/genética , Opsinas dos Cones/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Locos de Características Quantitativas , Sequências Reguladoras de Ácido Nucleico , Deleção de Sequência , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Ciclídeos/fisiologia , Evolução Molecular , Fenótipo , Filogenia , Regiões Promotoras Genéticas , Homologia de Sequência
13.
J Exp Biol ; 221(Pt 22)2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30158132

RESUMO

Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment, according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on genes encoding opsin, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales, including short time frames due to seasonal variation, or through longer-term evolutionary tuning. There is also evidence for 'on-the-fly' adaptations in adult fish in response to rapidly changing environmental conditions; however, results are contradictory. Here, we investigated the ability of three reef fish species that belong to two ecologically distinct families, yellow-striped cardinalfish (Ostorhinchus cyanosoma), Ambon damselfish (Pomacentrus amboinensis) and lemon damselfish (Pomacentrus moluccensis), to alter opsin gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that changes in opsin expression in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.


Assuntos
Visão de Cores/fisiologia , Proteínas de Peixes/genética , Expressão Gênica/fisiologia , Luz , Opsinas/genética , Perciformes/fisiologia , Animais , Visão de Cores/genética , Recifes de Corais , Ecossistema , Proteínas de Peixes/metabolismo , Opsinas/metabolismo , Perciformes/genética , Especificidade da Espécie , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 112(5): 1493-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25548152

RESUMO

Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.


Assuntos
Evolução Molecular , Peixes/genética , Duplicação Gênica , Opsinas/genética , Sequência de Aminoácidos , Animais , Peixes/classificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
15.
Mol Biol Evol ; 33(1): 201-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464127

RESUMO

Coral reefs are one of the most spectrally diverse environments, both in terms of habitat and animal color. Species identity, sex, and camouflage are drivers of the phenotypic diversity seen in coral reef fishes, but how the phenotypic diversity is reflected in the genotype remains to be answered. The labrids are a large, polyphyletic family of coral reef fishes that display a diverse range of colors, including developmental color morphs and extensive behavioral ecologies. Here, we assess the opsin sequence and expression diversity among labrids from the Great Barrier Reef, Australia. We found that labrids express a diverse palette of visual opsins, with gene duplications in both RH2 and LWS genes. The majority of opsins expressed were within the mid-to-long wavelength sensitive classes (RH2 and LWS). Three of the labrid species expressed SWS1 (ultra-violet sensitive) opsins with the majority expressing the violet-sensitive SWS2B gene and none expressing SWS2A. We used knowledge about spectral tuning sites to calculate approximate spectral sensitivities (λmax) for individual species' visual pigments, which corresponded well with previously published λmax values for closely related species (SWS1: 356-370 nm; SWS2B: 421-451 nm; RH2B: 452-492 nm; RH2A: 516-528 nm; LWS1: 554-555 nm; LWS2: 561-562 nm). In contrast to the phenotypic diversity displayed via color patterns and feeding ecology, there was little amino acid diversity within the known opsin sequence tuning sites. However, gene duplications and differential expression provide alternative mechanisms for tuning visual pigments, resulting in variable visual sensitivities among labrid species.


Assuntos
Peixes/genética , Duplicação Gênica/genética , Opsinas/genética , Animais , Opsinas/química , Opsinas/metabolismo , Filogenia , Retina/metabolismo
16.
Mol Ecol ; 26(21): 6036-6052, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28926160

RESUMO

Phenotypic plasticity allows organisms to adapt quickly to local environmental conditions and could facilitate adaptive radiations. Cichlids have recently undergone an adaptive radiation in Lake Malawi where they inhabit diverse light environments and tune their visual sensitivity through differences in cone opsin expression. While cichlid opsin expression is known to be plastic over development, whether adults remain plastic is unknown. Adult plasticity in visual tuning could play a role in cichlid radiations by enabling survival in changing environments and facilitating invasion into novel environments. Here we examine the existence of and temporal changes in adult visual plasticity of two closely related species. In complementary experiments, wild adult Metriaclima mbenji from Lake Malawi were moved to the lab under UV-deficient fluorescent lighting; while lab raised M. benetos were placed under UV-rich lighting designed to mimic light conditions in the wild. Surprisingly, adult cichlids in both experiments showed significant changes in the expression of the UV-sensitive single cone opsin, SWS1, in only 3 days. Modeling quantum catches in the light environments revealed a possible link between the light available to the SWS1 visual pigment and SWS1 expression. We conclude that adult cichlids can undergo rapid and significant changes in opsin expression in response to environmental light shifts that are relevant to their habitat and evolutionary history in Lake Malawi. This could have contributed to the rapid divergence characteristic of these fantastic fishes.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/genética , Opsinas dos Cones/genética , Luz , África Oriental , Animais , Evolução Biológica , Meio Ambiente , Lagos , Fenótipo , Raios Ultravioleta
17.
Mol Ecol ; 26(5): 1343-1356, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27997048

RESUMO

Vision is a critical sense for organismal survival with visual sensitivities strongly shaped by the environment. Some freshwater fishes with a Gondwanan origin are distributed in both South American rivers including the Amazon and African rivers and lakes. These different habitats likely required adaptations to murky and clear environments. In this study, we compare the molecular basis of Amazonian and African cichlid fishes' visual systems. We used next-generation sequencing of genomes and retinal transcriptomes to examine three Amazonian cichlid species. Genome assemblies revealed six cone opsin classes (SWS1, SWS2B, SWS2A, RH2B, RH2A and LWS) and rod opsin (RH1). However, the functionality of these genes varies across species with different pseudogenes found in different species. Our results support evidence of an RH2A gene duplication event that is shared across both cichlid groups, but which was probably followed by gene conversion. Transcriptome analyses show that Amazonian species mainly express three opsin classes (SWS2A, RH2A and LWS), which likely are a good match to the long-wavelength-oriented light environment of the Amazon basin. Furthermore, analysis of amino acid sequences suggests that the short-wavelength-sensitive genes (SWS2B, SWS2A) may be under selective pressures to shift their spectral properties to a longer-wavelength visual palette. Our results agree with the 'sensitivity hypothesis' where the light environment causes visual adaptation. Amazonian cichlid visual systems are likely adapting through gene expression, gene loss and possibly spectral tuning of opsin sequences. Such mechanisms may be shared across the Amazonian fish fauna.


Assuntos
Ciclídeos/genética , Proteínas de Peixes/genética , Opsinas/genética , Animais , Opsinas dos Cones/genética , Duplicação Gênica , Filogenia , Opsinas de Bastonetes/genética , América do Sul , Transcriptoma
18.
Mol Ecol ; 26(5): 1323-1342, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27997050

RESUMO

Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae.


Assuntos
Proteínas de Peixes/genética , Opsinas/genética , Perciformes/genética , Visão Ocular , Animais , Perciformes/fisiologia , Filogenia
19.
J Exp Biol ; 220(Pt 16): 2887-2899, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28546509

RESUMO

Color vision is the capacity to discriminate color regardless of brightness. It is essential for many fish species as they rely on color discrimination for numerous ecological tasks. The study of color vision is important because it can unveil the mechanisms that shape coloration patterns, visual system sensitivities and, hence, visual signals. In order to better understand the mechanisms underlying color vision, an integrative approach is necessary. This usually requires combining behavioral, physiological and genetic experiments with quantitative modeling, resulting in a distinctive characterization of the visual system. Here, we provide new data on the color vision of a rock-dwelling cichlid from Lake Malawi: Metriaclima benetos. For this study we used a behavioral approach to demonstrate color vision through classical conditioning, complemented with modeling of color vision to estimate color contrast. For our experiments we took into account opsin coexpression and considered whether cichlids exhibit a dichromatic or a trichromatic visual system. Behavioral experiments confirmed color vision in M. benetos; most fish were significantly more likely to choose the trained over the distracter stimuli, irrespective of brightness. Our results are supported by visual modeling that suggests that cichlids are trichromats and achieve color vision through color opponency mechanisms, which are a result of three different photoreceptor channels. Our analyses also suggest that opsin coexpression can negatively affect perceived color contrast. This study is particularly relevant for research on the cichlid lineage because cichlid visual capabilities and coloration patterns are implicated in their adaptive radiation.


Assuntos
Ciclídeos/fisiologia , Percepção de Cores , Visão de Cores , Células Fotorreceptoras de Vertebrados/fisiologia , Animais , Ciclídeos/genética , Proteínas de Peixes/genética , Expressão Gênica , Masculino , Opsinas/genética
20.
J Exp Biol ; 220(Pt 2): 266-277, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27811302

RESUMO

The distinct behaviours of animals and the varied habitats in which animals live place different requirements on their visual systems. A trade-off exists between resolution and sensitivity, with these properties varying across the retina. Spectral sensitivity, which affects both achromatic and chromatic (colour) vision, also varies across the retina, though the function of this inhomogeneity is less clear. We previously demonstrated spatially varying spectral sensitivity of double cones in the cichlid fish Metriaclima zebra owing to coexpression of different opsins. Here, we map the distributions of ganglion cells and cone cells and quantify opsin coexpression in single cones to show these also vary across the retina. We identify an area centralis with peak acuity and infrequent coexpression, which may be suited for tasks such as foraging and detecting male signals. The peripheral retina has reduced ganglion cell densities and increased opsin coexpression. Modeling of cichlid visual tasks indicates that coexpression might hinder colour discrimination of foraging targets and some fish colours. But, coexpression might improve contrast detection of dark objects against bright backgrounds, which might be useful for detecting predators or zooplankton. This suggests a trade-off between acuity and colour discrimination in the central retina versus lower resolution but more sensitive contrast detection in the peripheral retina. Significant variation in the pattern of coexpression among individuals, however, raises interesting questions about the selective forces at work.


Assuntos
Ciclídeos/fisiologia , Opsinas dos Cones/metabolismo , Proteínas de Peixes/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Percepção Visual , Animais , Ciclídeos/genética , Feminino , Masculino , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA