Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2312380120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215185

RESUMO

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Masculino , Evolução Biológica , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Reprodução/genética , Comportamento Sexual Animal
2.
J Exp Zool B Mol Dev Evol ; 336(8): 652-665, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33015976

RESUMO

Sexual reproduction involves a cascade of molecular interactions between the sperm and the egg culminating in cell-cell fusion. Vital steps mediating fertilization include chemoattraction of the sperm to the egg, induction of the sperm acrosome reaction, dissolution of the egg coat, and sperm-egg plasma membrane binding and fusion. Despite decades of research, only a handful of interacting gamete recognition proteins (GRPs) have been identified across taxa mediating each of these steps, most notably in abalone, sea urchins, and mammals. This review outlines and compares notable GRP pairs mediating sperm-egg recognition in these three significant model systems and discusses the molecular basis of species-specific fertilization driven by GRP function. In addition, we explore the evolutionary theory behind the rapid diversification of GRPs between species. In particular, we focus on how the coevolution between interacting sperm and egg proteins may contribute to the formation of boundaries to hybridization. Finally, we discuss how pairing structural information with evolutionary insights can improve our understanding of mechanisms of fertilization and their origins.


Assuntos
Fertilização , Interações Espermatozoide-Óvulo , Animais , Evolução Molecular , Feminino , Masculino , Mamíferos , Reprodução , Ouriços-do-Mar/genética , Espermatozoides
3.
Proc Natl Acad Sci U S A ; 115(34): E7997-E8006, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30068600

RESUMO

Few mechanisms are known that explain how transcription factors can adjust phenotypic outputs to accommodate differing environments. In Saccharomyces cerevisiae, the decision to mate or invade relies on environmental cues that converge on a shared transcription factor, Ste12. Specificity toward invasion occurs via Ste12 binding cooperatively with the cofactor Tec1. Here, we determine the range of phenotypic outputs (mating vs. invasion) of thousands of DNA-binding domain variants in Ste12 to understand how preference for invasion may arise. We find that single amino acid changes in the DNA-binding domain can shift the preference of yeast toward either mating or invasion. These mutations define two distinct regions of this domain, suggesting alternative modes of DNA binding for each trait. We characterize the DNA-binding specificity of wild-type Ste12 to identify a strong preference for spacing and orientation of both homodimeric and heterodimeric sites. Ste12 mutants that promote hyperinvasion in a Tec1-independent manner fail to bind cooperative sites with Tec1 and bind to unusual dimeric Ste12 sites composed of one near-perfect and one highly degenerate site. We propose a model in which Ste12 alone may have evolved to activate invasion genes, which could explain how preference for invasion arose in the many fungal pathogens that lack Tec1.


Assuntos
Proteínas de Ligação a DNA , Modelos Genéticos , Característica Quantitativa Herdável , Elementos de Resposta , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Substituição de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 11(5): e1005265, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26016853

RESUMO

GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica , Imunidade Inata/genética , Mucosa Intestinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/genética , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Regiões Promotoras Genéticas , Pseudomonas aeruginosa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
5.
Commun Biol ; 7(1): 90, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216628

RESUMO

Unique patterns of inheritance and selection on Y chromosomes have led to the evolution of specialized gene functions. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as those of wild-type and that mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract. Therefore, although mature sperm are produced by WDY mutant males, and are transferred to females, those sperm fail to enter the female sperm storage organs. We report genotype-dependent and regional differences in sperm motility that appear to break the correlation between sperm tail beating and propulsion. Furthermore, we identify a significant change in hydrophobicity at a residue at a putative calcium-binding site in WDY orthologs at the split between the melanogaster and obscura species groups, when WDY first became Y-linked. This suggests that a major functional change in WDY coincided with its appearance on the Y chromosome. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.


Assuntos
Drosophila melanogaster , Genes Ligados ao Cromossomo Y , Motilidade dos Espermatozoides , Animais , Feminino , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Sêmen , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Proteínas de Drosophila/genética
6.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37425821

RESUMO

Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appear to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, SPR, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.

7.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36778485

RESUMO

Unique patterns of inheritance and selection on Y chromosomes lead to the evolution of specialized gene functions. Yet characterizing the function of genes on Y chromosomes is notoriously difficult. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. WDY mutants produce mature sperm with beating tails that can be transferred to females but fail to enter the female sperm storage organs. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as wild-type sperm's and that the mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract (RT). These specific motility defects likely cause the sperm storage defect and sterility of the mutants. Regional and genotype-dependent differences in sperm motility suggest that sperm tail beating and propulsion do not always correlate. Furthermore, we find significant differences in the hydrophobicity of key residues of a putative calcium-binding domain between orthologs of WDY that are Y-linked and those that are autosomal. Given that WDY appears to be evolving under positive selection, our results suggest that WDY's functional evolution coincides with its transition from autosomal to Y-linked in Drosophila melanogaster and its most closely related species. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. In contrast to WDY, PRY mutants do swim in the female RT, suggesting they are defective in yet another mode of motility, navigation, or a necessary interaction with the female RT. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA