Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 107(4): 265-282, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35178802

RESUMO

NEW FINDINGS: What is the topic of this review? The Zucker Diabetic-Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co-morbidities. ABSTRACT: Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co-morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic-Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high-fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic-Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex-related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Pesquisa Translacional Biomédica
2.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884649

RESUMO

Prostate cancer is the most common cancer in American men and the second leading cause of cancer-related death. Most of these deaths are associated with metastasis, a process involving the epithelial-to-mesenchymal (EMT) transition. Furthermore, growing evidence suggests that partial-EMT (p-EMT) may lead to more aggressive disease than complete EMT. In this study, the EMT-inducing transcription factor Zeb1 was knocked down in mesenchymal PC-3 prostate cancer cells (Zeb1KD) and resulting changes in cellular phenotype were assessed using protein and RNA analysis, invasion and migration assays, cell morphology assays, and DNA methylation chip analysis. Inducible knockdown of Zeb1 resulted in a p-EMT phenotype including co-expression of epithelial and mesenchymal markers, a mixed epithelial/mesenchymal morphology, increased invasion and migration, and enhanced expression of p-EMT markers relative to PC-3 mesenchymal controls (p ≤ 0.05). Treatment of Zeb1KD cells with the global de-methylating drug 5-azacytidine (5-aza) mitigated the observed aggressive p-EMT phenotype (p ≤ 0.05). DNA methylation chip analysis revealed 10 potential targets for identifying and/or targeting aggressive p-EMT prostate cancer in the future. These findings provide a framework to enhance prognostic and/or therapeutic options for aggressive prostate cancer in the future by identifying new p-EMT biomarkers to classify patients with aggressive disease who may benefit from 5-aza treatment.


Assuntos
Metilação de DNA , Neoplasias da Próstata/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/biossíntese , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Conectina/genética , Conectina/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
3.
Biochem Pharmacol ; 206: 115319, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279920

RESUMO

Endothelium dysfunction produces peripheral vascular disease comorbidities in type 2 diabetes, including hypertension, and critical limb ischemia. In this study we aimed to test endothelial dysfunction, the vasodilator effects of a proteinase-activated receptor 2 (PAR2) agonist (2fLIGRLO), and thromboxane A2 synthase inhibitor (ozagrel) on PAR2 vasodilation in hind limb arteries ex vivo, using Zucker Diabetic-Sprague Dawley (ZDSD) rats, a model of type 2 diabetes. Male Sprague Dawley rats (SD) and ZDSD were fed a high-fat content 'Western diet' from 16 to 20 weeks of age (wks) then fed a standard laboratory diet. We identified diabetic ZDSD rats by two consecutive blood glucose measurements > 12.5 mM, based on weekly monitoring. We used acetylcholine, 2fLIGRLO, and nitroprusside with wire-myograph methods to compare relaxations of femoral, and saphenous arteries from diabetic ZDSD (21-23 wks) to age-matched normoglycemic SD. All arteries showed evidence of endothelium dysfunction using acetylcholine (reduced maximum relaxations, reduced sensitivity), and higher sensitivities to 2fLIGRLO, and nitroprusside in ZDSD vs SD. Ozagrel treatment of ZDSD distal segments, and end-branches of saphenous arteries decreased their sensitivities to 2fLIGRLO. We tested aortas for altered expression of endothelium-specific gene targets using PCR array and qPCR. PAR2, and placental growth factor gene transcripts were 1.5, and 4-times higher in ZDSD than SD aortas. Hind limb arteries of ZDSD exhibit endothelium dysfunction having less GPCR agonist induced vasodilation by endothelial NO-release. Different expression of several endothelial genes in ZDSD vs SD aortas, including PAR2, suggests altered inflammatory, and angiogenesis signaling pathways in the endothelium of ZDSD.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Vasculares , Animais , Masculino , Ratos , Acetilcolina/farmacologia , Artérias/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas , Nitroprussiato/farmacologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/farmacologia , Ratos Sprague-Dawley , Ratos Zucker , Receptor PAR-2/genética , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Doenças Vasculares/metabolismo , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA