Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
1.
J Thorac Cardiovasc Surg ; 155(2): 461-469.e4, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29042101

RESUMO

BACKGROUND: Bicuspid aortic valves (BAV) are associated with incompletely characterized aortopathy. Our objectives were to identify distinct patterns of aortopathy using machine-learning methods and characterize their association with valve morphology and patient characteristics. METHODS: We analyzed preoperative 3-dimensional computed tomography reconstructions for 656 patients with BAV undergoing ascending aorta surgery between January 2002 and January 2014. Unsupervised partitioning around medoids was used to cluster aortic dimensions. Group differences were identified using polytomous random forest analysis. RESULTS: Three distinct aneurysm phenotypes were identified: root (n = 83; 13%), with predominant dilatation at sinuses of Valsalva; ascending (n = 364; 55%), with supracoronary enlargement rarely extending past the brachiocephalic artery; and arch (n = 209; 32%), with aortic arch dilatation. The arch phenotype had the greatest association with right-noncoronary cusp fusion: 29%, versus 13% for ascending and 15% for root phenotypes (P < .0001). Severe valve regurgitation was most prevalent in root phenotype (57%), followed by ascending (34%) and arch phenotypes (25%; P < .0001). Aortic stenosis was most prevalent in arch phenotype (62%), followed by ascending (50%) and root phenotypes (28%; P < .0001). Patient age increased as the extent of aneurysm became more distal (root, 49 years; ascending, 53 years; arch, 57 years; P < .0001), and root phenotype was associated with greater male predominance compared with ascending and arch phenotypes (94%, 76%, and 70%, respectively; P < .0001). Phenotypes were visually recognizable with 94% accuracy. CONCLUSIONS: Three distinct phenotypes of bicuspid valve-associated aortopathy were identified using machine-learning methodology. Patient characteristics and valvular dysfunction vary by phenotype, suggesting that the location of aortic pathology may be related to the underlying pathophysiology of this disease.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aneurisma Aórtico/diagnóstico por imagem , Valva Aórtica/anormalidades , Aortografia/métodos , Angiografia por Tomografia Computadorizada/métodos , Diagnóstico por Computador/métodos , Doenças das Valvas Cardíacas/diagnóstico por imagem , Aprendizado de Máquina , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Seio Aórtico/diagnóstico por imagem , Adulto , Idoso , Aorta Torácica/fisiopatologia , Aneurisma Aórtico/classificação , Aneurisma Aórtico/etiologia , Aneurisma Aórtico/fisiopatologia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Insuficiência da Valva Aórtica/diagnóstico por imagem , Insuficiência da Valva Aórtica/etiologia , Insuficiência da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/fisiopatologia , Doença da Válvula Aórtica Bicúspide , Estudos Transversais , Feminino , Doenças das Valvas Cardíacas/classificação , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Seio Aórtico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA