Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(20): 203001, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462011

RESUMO

Nuclear magnetic relaxation is widely used to probe protein dynamics. For decades, most analyses of relaxation in proteins have relied successfully on the model-free approach, forgoing mechanistic descriptions of motion. Model-free types of correlation functions cannot describe a large carbon-13 relaxation dataset in protein side chains. Here, we use molecular dynamics simulations to design explicit models of motion and solve Fokker-Planck diffusion equations. These models of motion provide better agreement with relaxation data, mechanistic insight, and a direct link to configuration entropy.


Assuntos
Simulação de Dinâmica Molecular , Movimento (Física) , Difusão , Entropia
2.
Phys Chem Chem Phys ; 23(3): 2245-2251, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33443274

RESUMO

The 17O resonances of zirconium-oxo clusters that can be found in porous Zr carboxylate metal-organic frameworks (MOFs) have been investigated by magic-angle spinning (MAS) NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). High-resolution 17O spectra at 0.037% natural abundance could be obtained in 48 hours, thanks to DNP enhancement of the 1H polarization by factors ε(1H) = Swith/Swithout = 28, followed by 1H → 17O cross-polarization, allowing a saving in experimental time by a factor of ca. 800. The distinct 17O sites from the oxo-clusters can be resolved at 18.8 T. Their assignment is supported by density functional theory (DFT) calculations of chemical shifts and quadrupolar parameters. Protonation of 17O sites seems to be leading to large characteristic shifts. Hence, natural abundance 17O NMR spectra of diamagnetic MOFs can thus be used to probe and characterize the local environment of different 17O sites on an atomic scale.

3.
Chemphyschem ; 21(10): 1044-1051, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32191377

RESUMO

The isotopic enrichment of nucleic acids with nitrogen-15 is often carried out by solid-phase synthesis of oligonucleotides using phosphoramidite precursors that are synthetically demanding and expensive. These synthetic challenges, combined with the overlap of chemical shifts, explain the lag of nitrogen-15 NMR studies of nucleic acids behind those of proteins. For the structural characterization of DNA and RNA-related systems, new NMR methods that exploit the naturally occurring 99.9 % abundant nitrogen-14 isotope are therefore highly desirable. In this study, we have investigated nitrogen-14 spectra of self-assembled quartets based on the nucleobase guanine in the solid state by means of magic-angle spinning NMR spectroscopy. The network of dipolar proton-nitrogen couplings between neighboring stacked purine units is probed by 2D spectra based on 1 H→14 N→1 H double cross-polarization. Interplane dipolar contacts are identified between the stacked G quartets. The assignment is supported by density functional theory (DFT) calculations of the anisotropic chemical shifts and quadrupolar parameters. The experimental spectra are fully consistent with internuclear distances obtained in silico. Averaging of chemical shifts due to internal motions can be interpreted by semiempirical calculations. This method can easily be extended to synthetic G quartets based on nucleobase or nucleoside analogs and potentially to oligonucleotides.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , RNA/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Nitrogênio/química
4.
J Phys Chem A ; 123(45): 9763-9769, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633935

RESUMO

The longitudinal spin-lattice relaxation properties of water molecules trapped in a static powdered polycrystalline sample of barium chlorate monohydrate are investigated by means of solid-state 1H NMR spectroscopy. Different portions of the inhomogeneous Pake pattern that are associated with crystallites at different orientations with respect to the external magnetic field show either a mono- or a biexponential recovery. At high field (9.4 T), the chemical shift anisotropy is the main interaction that is responsible for the inhomogeneity of the relaxation rates. A theoretical description of rapid two-site hopping about the H-O-H bisector in the framework of Liouville space agrees very well with the experimental evidence. Numerical simulations predict a distribution of monoexponential time constants associated with individual single-crystal orientations. Overlapping signals give rise to biexponential recovery. This is confirmed experimentally by 1H NMR spectra of static single crystals.

5.
Phys Chem Chem Phys ; 19(7): 5525-5539, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28165068

RESUMO

The columnar self-assembly resulting from units of N,N',N''-trihexylbenzene-1,3,5-tricarboxamide is investigated in solution and the solid state by means of NMR spectroscopy. A parallel computational study utilizing both semiempirical and DFT methods allows comparison between experimental results and calculated data for self-assembled and non-assembled structural hypotheses. The hybrid functional B3LYP is compared with the B3LYP-D and B97D functionals to assess contributions due to dispersion interactions. Interatomic distances are studied utilizing ROE experiments on proton spins in solution. Isotropic shifts as measured experimentally are shown to offer a method to assess the self-assemblies 'on-the-fly'. The anisotropic part of the shift interaction for carbon nuclei is probed in the solid state with specific magic-angle spinning experiments. The sensitivity of the NMR parameters for various carbon environments with respect to the orientation of the substituents and packing effects is investigated computationally. We show that all the utilized experimental techniques, in both solution and the solid state, and in combination with DFT calculations, are capable of discerning between assembled and non-assembled systems and offer a robust set of independent tools to highlight atomic details in self-organized structures.

6.
J Chem Phys ; 147(18): 184201, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141439

RESUMO

Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.

7.
Phys Chem Chem Phys ; 18(16): 11480-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27058951

RESUMO

Complex overlapping multiplets due to scalar couplings (n)J((13)C, (13)C) in fully (13)C-enriched molecules can be simplified by polychromatic irradiation of selected spins. The signal intensities of the remaining non-irradiated signals are proportional to the concentrations, as shown in this work for the anomeric (13)C signals of the α- and ß-conformers of glucose. Homonuclear decoupling can therefore be useful for quantitative NMR studies. The resulting decoupled lineshapes show residual fine structures that have been investigated by means of numerical simulations. Simulations also show that homonuclear decoupling schemes remain effective despite inhomogeneous static fields that tend to hamper in cellulo and in vivo studies. Homonuclear decoupling schemes can be combined with dissolution DNP to obtain signal enhancements of more than four orders of magnitude. Polychromatic irradiation of selected spins does not cause significant losses of hyperpolarization of the remaining non-irradiated spins.

8.
Phys Chem Chem Phys ; 17(9): 6415-22, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25656977

RESUMO

Thurber and Tycko recently described a 'bleaching effect' that occurs in magnetic resonance when solid samples that are doped with paramagnetic agents are subjected to rotation by magic angle spinning (MAS) in a static magnetic field with a rotation period comparable to the longitudinal relaxation time T1e of the electron spins. The bleaching effect has been investigated by Thurber and Tycko in samples spinning at temperatures near 20 K in a field of 9.4 T and by Corzilius et al. near 80 K in a field of 4.9 T. In our experience, the bleaching effect is not very severe at temperatures near 100 K in a field of 9.4 T at spinning frequencies up to 12 kHz. Bleaching can partly cancel DNP enhancements that are normally evaluated by comparing signal intensities with and without microwave irradiation. The signal attenuation due to doping and sample rotation is usually not taken into consideration when defining enhancement factors. In this paper, we describe a novel observation that the rotation of glassy samples doped with lanthanides spinning at frequencies as low as 0.1 kHz can lead to a significant reduction of the spin-lattice relaxation times T1((1)H) of protons. This effect, which bears similarities with the so-called spin refrigerators, may contribute to the success of 'brute force polarization' at sample temperatures in the mK range. The acceleration of longitudinal proton relaxation also allows one to improve the signal-to-noise ratio per unit time.

9.
Phys Chem Chem Phys ; 17(40): 26819-27, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26399171

RESUMO

Para-water is an analogue of para-hydrogen, where the two proton spins are in a quantum state that is antisymmetric under permutation, also known as singlet state. The populations of the nuclear spin states in para-water are believed to have long lifetimes just like other Long-Lived States (LLSs). This hypothesis can be verified by measuring the relaxation of an excess or a deficiency of para-water, also known as a "Triplet-Singlet Imbalance" (TSI), i.e., a difference between the average population of the three triplet states T (that are symmetric under permutation) and the population of the singlet state S. In analogy with our recent findings on ethanol and fumarate, we propose to adapt the procedure for Dissolution Dynamic Nuclear Polarization (D-DNP) to prepare such a TSI in frozen water at very low temperatures in the vicinity of 1.2 K. After rapid heating and dissolution using an aprotic solvent, the TSI should be largely preserved. To assess this hypothesis, we studied the lifetime of water as a molecular entity when diluted in various solvents. In neat liquid H2O, proton exchange rates have been characterized by spin-echo experiments on oxygen-17 in natural abundance, with and without proton decoupling. One-dimensional exchange spectroscopy (EXSY) has been used to study proton exchange rates in H2O, HDO and D2O mixtures diluted in various aprotic solvents. In the case of 50 mM H2O in dioxane-d8, the proton exchange lifetime is about 20 s. After dissolving, one can observe this TSI by monitoring intensities in oxygen-17 spectra of H2O (if necessary using isotopically enriched samples) where the AX2 system comprising a "spy" oxygen A and two protons X2 gives rise to binomial multiplets only if the TSI vanishes. Alternatively, fast chemical addition to a suitable substrate (such as an activated aldehyde or ketone) can provide AX2 systems where a carbon-13 acts as a spy nucleus. Proton signals that relax to equilibrium with two distinct time constants can be considered as a hallmark of a TSI. We optimized several experimental procedures designed to preserve and reveal dilute para-water in bulk.


Assuntos
Prótons , Água/química
10.
Magn Reson Chem ; 53(2): 88-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25228149

RESUMO

We report applications of dynamic nuclear polarization to enhance proton and vanadium-51 polarization of vanadyl sulfate samples doped with TOTAPOL under magic angle spinning conditions. The electron paramagnetic resonance response stemming from the paramagnetic (51)V species was monitored as a function of pH, which can be adjusted to improve the enhancement of the proton polarization. By means of cross-polarization from the proton bath, (51)V spins could be hyperpolarized. Enhancement factors, build-up times, and longitudinal relaxation times T1((1)H) and T1((51)V) were investigated as a function of pH.

11.
Angew Chem Int Ed Engl ; 54(7): 2190-3, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25469825

RESUMO

Fibrous nanosilica (KCC-1) oxynitrides are promising solid-base catalysts. Paradoxically, when their nitrogen content increases, their catalytic activity decreases. This counterintuitive observation is explained here for the first time using (15) N-solid-state NMR spectroscopy enhanced by dynamic nuclear polarization.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Catálise , Espectroscopia de Ressonância Magnética , Nanoestruturas/ultraestrutura
12.
J Biomol NMR ; 56(2): 85-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23689811

RESUMO

The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear (13)C and (15)N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ribossomos/química , Congelamento , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos
13.
Chemphyschem ; 14(2): 369-73, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23281148

RESUMO

In the long bygone days of continuous-wave nuclear magnetic resonance (NMR) spectroscopy, a selected transition within a multiplet of a high-resolution spectrum could be irradiated by a highly selective continuous-wave (CW) radio-frequency (rf) field with a very weak amplitude ω(2)/(2π)≤J. This causes splittings of connected transitions, allowing one to map the connectivities of all transitions within the energy-level diagram of the spin system. Such "tickling" experiments stimulated the invention of two-dimensional spectroscopy, but seem to have been forgotten for nearly 50 years. We show that tickling can readily be achieved in homonuclear systems with Fourier transform spectrometers by applying short pulses in the intervals between the sampling points. Extensions to heteronuclear systems are even more straightforward since they can be carried out using very weak CW rf fields.


Assuntos
Análise de Fourier , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
14.
Phys Chem Chem Phys ; 15(15): 5553-62, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23459985

RESUMO

We systematically studied the enhancement factor (per scan) and the sensitivity enhancement (per unit time) in (13)C and (29)Si cross-polarization magic angle spinning (CP-MAS) NMR boosted by dynamic nuclear polarization (DNP) of functionalized mesoporous silica nanoparticles (MSNs). Specifically, we separated contributions due to: (i) microwave irradiation, (ii) quenching by paramagnetic effects, (iii) the presence of frozen solvent, (iv) the temperature, as well as changes in (v) relaxation and (vi) cross-polarization behaviour. No line-broadening effects were observed for MSNs when lowering the temperature from 300 to 100 K. Notwithstanding a significant signal reduction due to quenching by TOTAPOL radicals, DNP-CP-MAS at 100 K provided global sensitivity enhancements of 23 and 45 for (13)C and (29)Si, respectively, relative to standard CP-MAS measurements at room temperature. The effects of DNP were also ascertained by comparing with state-of-the-art two-dimensional heteronuclear (1)H{(13)C} and (29)Si{(1)H} correlation spectra, using, respectively, indirect detection or Carr-Purcell-Meiboom-Gill (CPMG) refocusing to boost signal acquisition. This study highlights opportunities for further improvements through the development of high-field DNP, better polarizing agents, and improved capabilities for low-temperature MAS.

15.
Chemistry ; 18(37): 11573-6, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22865540

RESUMO

Window-acquired tetrachromatic irradiation allows one to decouple simultaneously four amide protons in cyclosporine A (wavy arrows; see figure) leading to simplified multiplets of the alpha protons. By inserting a manifold of polychromatic pulses in each dwell time, several subsystems can be decoupled simultaneously.


Assuntos
Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética , Soluções
16.
Chimia (Aarau) ; 66(10): 734-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23146257

RESUMO

Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

17.
J Phys Chem Lett ; 13(1): 175-182, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34965134

RESUMO

Dipolar or quadrupolar echoes allow one to observe undistorted powder patterns, in contrast to simple Fourier transformations of free induction decays (FIDs). In this work, the buildup of proton polarization due to dynamic nuclear polarization (DNP) is monitored by observing echoes rather than FIDs. When the microwave irradiation is interrupted during the buildup of DNP, the electrons relax back to their Boltzmann distribution at high fields (B0 = 6.7 T) and low temperatures 1.2 < Tsample < 4.0 K, so that dipolar flip-flop-flip terms involving two electrons and one proton become largely ineffective as a mechanism of proton decoherence. This leads to a prolongation of the nuclear coherence lifetime T2'(1H). The increase in T2'(1H) leads to transient surges of the amplitudes of spin echoes. Conversely, transient slumps of spin echoes are observed when the microwave irradiation is switched back on, due to a shortening of nuclear coherence lifetimes.

18.
Chimia (Aarau) ; 65(9): 652-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22026172

RESUMO

Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On the one hand, we show how to populate long-lived states (LLS) that have long lifetimes T(LLS) which allow one to go beyond the usual limits imposed by the longitudinal relaxation time T1. This makes it possible to extend NMR experiments to longer time-scales. As an application, we demonstrate the extension of the timescale of diffusion measurements by NMR spectroscopy. On the other hand, we review our work on long-lived coherences (LLC), a particular type of coherence between two spin states that oscillates with the frequency of the scalar coupling constant J(IS) and decays with a time constant T(LLC). Again, this time constant T(LLC) can be much longer than the transverse relaxation time T2. By extending the coherence lifetimes, we can narrow the linewidths to an unprecedented extent. J-couplings and residual dipolar couplings (RDCs) in weakly-oriented phases can be measured with the highest precision.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Modelos Teóricos , Fatores de Tempo , Ubiquitina/química
19.
J Phys Chem Lett ; 11(9): 3219-3225, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251593

RESUMO

Dynamic nuclear polarization of samples at low temperatures, typically between 1.2 and 4.2 K, allows one to achieve spin temperatures of as low as 2 mK so that for many nuclear isotopes the high-temperature approximation is violated for the nuclear Zeeman interaction. This leads to characteristic asymmetries in powder spectra. We show that the line shapes due to the quadrupolar couplings of deuterium spins present in virtually all solvents used for such experiments (DNP juice) allow the quick yet accurate determination of the deuterium spin temperature or, equivalently, the deuterium polarization. The observation of quadrupolar echoes excited by small flip-angle pulses allows one to monitor the build-up and decay of the positive or negative deuterium polarization.

20.
J Phys Chem Lett ; 10(12): 3224-3231, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31059264

RESUMO

Water molecules trapped in crystals of barium chlorate monohydrate have been investigated by magic-angle spinning (MAS) proton NMR spectroscopy in the temperature range 110-300 K. At high temperatures, a single spinning sideband pattern is observed. Below 150 K, however, two interleaved spinning sideband manifolds appear, with distinct centerbands that do not coincide with the average isotropic chemical shift seen at high temperatures. This hitherto unknown "cross-term splitting" results from the interplay of the homonuclear dipole-dipole coupling and two anisotropic proton shielding tensors that have identical principal components but nonequivalent orientations. The resulting cross terms cannot be averaged out by rotation about the magic angle. The analysis of the exchange-induced broadening, coalescence, and narrowing of the cross-term splitting in MAS spectra allows one to estimate the rate of exchange of the two protons between 140 and 190 K. The experimental data is compared with 2H and 1H NMR studies of the same sample reported in the literature. Density functional theory methods are utilized to estimate the thermal activation energy for a 2-fold hopping process of proton exchange about the H-O-H bisector. The Bell-Limbach model allows one to take into account contributions due to incoherent quantum tunneling in the low-temperature regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA