Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Horm Behav ; 160: 105491, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340412

RESUMO

Trees release Herbivore-Induced Plant Volatiles (HIPVs) into the air in response to damage inflicted by insects. It is known that songbirds use those compounds to locate their prey, but more recently the idea emerged that songbirds could also use those odours as cues in their reproductive decisions, as early spring HIPVs may contain information about the seasonal timing and abundance of insects. We exposed pre-breeding great tits (Parus major) to the odours of caterpillar-infested trees under controlled conditions, and monitored reproduction (timing of egg laying, number of eggs, egg size) and two of its main hormonal drivers (testosterone and 17ß-estradiol in males and females, respectively). We found that females exposed to HIPVs did not advance their laying dates, nor laid larger clutches, or larger eggs compared to control females. 17ß-estradiol concentrations in females were also similar between experimental and control birds. However, males exposed to HIPVs had higher testosterone concentrations during the egg-laying period. Our study supports the hypothesis that insectivorous songbirds are able to detect minute amounts of plant odours. The sole manipulation of plant scents was not sufficient to lure females into a higher reproductive investment, but males increased their reproductive effort in response to a novel source of information for seasonal breeding birds.


Assuntos
Passeriformes , Aves Canoras , Feminino , Animais , Masculino , Testosterona , Árvores , Odorantes , Melhoramento Vegetal , Passeriformes/fisiologia , Aves Canoras/fisiologia , Reprodução/fisiologia , Insetos , Estradiol
2.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099472

RESUMO

Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.


Assuntos
Visão de Cores , Sensibilidades de Contraste , Animais , Filogenia , Aves , Vertebrados , Mamíferos
3.
J Exp Biol ; 226(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876334

RESUMO

Many organisms rely on environmental cues to predict and anticipate the annual optimal timing of reproduction. In insectivorous birds, preparation for breeding often coincides with the time vegetation starts to develop in spring. Whether there is a direct relationship between the two, and through which mechanisms this link could come about, has rarely been investigated. Plants release herbivore-induced plant volatiles (HIPVs) when they are attacked by insects, and recent studies have shown that birds can detect and orient to those odours when searching for food. Whether those volatiles also stimulate sexual reproductive development and timing of reproduction remains to be discovered. We tested this hypothesis by monitoring gonadal growth in pairs of blue tits (Cyanistes caeruleus) exposed to air from caterpillar-infested oak trees or from a control, in spring. We found that while males and females grew their gonads over time, gonads grew at the same rate in both odour treatments. More exploratory (i.e. a proxy of personality) females did, however, have larger ovarian follicle sizes when exposed to the HIPVs than to the control air, which is consistent with earlier results showing that fast explorers have larger gonads in spring and are more sensitive to HIPVs. If HIPVs constitute powerful attractants in foraging birds, their influence on gonadal development prior to breeding appears to be relatively subtle and to only enhance reproductive readiness in some individuals. These results are nevertheless important as they set olfaction as a new player in the seasonal timing of reproduction in birds.


Assuntos
Lepidópteros , Aves Canoras , Animais , Feminino , Masculino , Odorantes , Herbivoria , Reprodução
4.
J Therm Biol ; 110: 103383, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462889

RESUMO

Breeders evolved adaptive responses to rapid changes in ambient temperature. In birds, nests are expected to reduce egg cooling when the incubator is temporarily off the eggs. Here we present the results of two complementary laboratory experiments aiming at testing the association between egg cooling and the thickness of the nest under and surrounding the eggs in a non-domesticated avian model species (great tit, Parus major). To simulate incubation behaviour, we exposed nests with 4-egg clutches to a heat source until the eggs reached a normal incubation temperature (ca. 39 °C) and then recorded egg cooling 8 min after removal of the heat source, which corresponds to the time females generally leave eggs unattended during the incubation period. Eggs cooled more quickly when the nest layer under the eggs was thinner and when ambient temperature was cooler. We also show that the wall around the nest cup is important to buffer egg cooling. It is hypothesised that in bird nests, both the thickness of the material under the eggs, and the wall surrounding the nest cup interact to maintain a heat envelope around the eggs for the time the incubating parent is foraging. This could explain why the thickness of the nest base and wall are adjusted to the ambient temperature the birds experience during the nest building phase, to anticipate the thermal conditions during incubation and preserve egg viability.


Assuntos
Temperatura Baixa , Passeriformes , Feminino , Animais , Transição de Fase , Ovos , Temperatura Alta
5.
Horm Behav ; 136: 105045, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537486

RESUMO

In response to damage by insects, plants release herbivore-induced plant volatiles (HIPVs) into the air. Insectivorous birds exploit these cues and, consequently, reduce the damages inflicted to the plants. However, little is known about whether they solely use HIPVs as foraging cues, or if they also use them to modulate traits linked to reproduction. As caterpillars are the primary food source required for insectivorous birds to raise offspring, their ability to locate and predict future peaks in caterpillar biomass using olfaction is likely to be advantageous. Therefore, we tested whether an insectivorous songbird that naturally inhabits oak dominated forests can be trained to detect early spring infestation by hatchling caterpillars, at a time when oaks begin bursting, and birds prepare to breed. Tree buds were either infested with caterpillars or left as a control and visually obscured in a Y-Maze choice test. Additionally, we measured testosterone and 17ß-estradiol as they influence olfactory perception in mammals and are linked to reproduction in vertebrates. After being trained to associate the presence of HIPVs with that of food, blue tits spent more time with, were more active around, and more frequently chose to first visit the infested trees, showing that blue tits can smell caterpillar activity. Males with higher testosterone spent more time around infested trees, suggesting that foraging behavior during the pre-breeding season is linked with a major reproductive signal. There was no relationship between foraging and estradiol in females. These results are an important foundation for further investigation of the role of hormones in avian olfaction and how smell may be useful for making breeding decisions that could improve reproductive success.


Assuntos
Olfato , Aves Canoras , Animais , Estradiol , Feminino , Larva/fisiologia , Masculino , Mamíferos , Testosterona
6.
J Anim Ecol ; 90(9): 2147-2160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205462

RESUMO

The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.


Assuntos
Aves , Metadados , Animais , Bases de Dados Factuais
7.
Int J Biometeorol ; 64(10): 1767-1775, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594247

RESUMO

Temperature is one of the best investigated environmental factors in ecological life-history studies and is increasingly considered in the contexts of climate change and urbanization. In avian ecology, few studies have examined the associations between thermal dynamics in the nest environment and its neighbouring air. Here, we placed avian nests and non-incubated eggs inside nest boxes at various air temperatures that ranged from 0.3 to 33.1 °C, both in the field and in laboratory conditions. We measured how the design of the boxes, their compass orientation and their location in more or less urbanized environments affected the surface temperature of nests and eggs. We also assessed whether covering the eggs with lining material influenced their surface temperature. Overall, across all performed tests, we found that the surface temperature of nests and eggs strongly reflected the air temperature measured outside of the nest boxes. While the design of the nest boxes had little influence on the temperature of nests and eggs, orienting the nest boxes to the north or to the west significantly decreased their surface temperature. The presence of lining material also kept eggs slightly warmer when air temperatures were low. Altogether these results suggest that non-incubated eggs are not well protected against extreme air temperatures prior to the onset of incubation. From an evolutionary point of view, producers of ectotherm eggs need therefore to time egg-laying appropriately in order to avoid unfavourable thermal nest environments.


Assuntos
Comportamento de Nidação , Passeriformes , Animais , Ovos , Temperatura Alta , Temperatura
8.
Proc Biol Sci ; 286(1902): 20190142, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039718

RESUMO

Seasonal timing of reproduction is a key life-history trait, but we know little about the mechanisms underlying individual variation in female endocrine profiles associated with reproduction. In birds, 17ß-oestradiol is a key reproductive hormone that links brain neuroendocrine mechanisms, involved in information processing and decision-making, to downstream mechanisms in the liver, where egg-yolk is produced. Here, we test, using a simulated induction of the reproductive system through a Gonadotropin-Releasing Hormone (GnRH) challenge, whether the ovary of pre-breeding female great tits responds to brain stimulation by increasing oestradiol. We also assess how this response is modified by individual-specific traits like age, ovarian follicle size, and personality, using females from lines artificially selected for divergent levels of exploratory behaviour. We show that a GnRH injection leads to a rapid increase in circulating concentrations of oestradiol, but responses varied among individuals. Females with more developed ovarian follicles showed stronger responses and females from lines selected for fast exploratory behaviour showed stronger increases compared to females from the slow line, indicating a heritable component. This study shows that the response of the ovary to reproductive stimulation from the brain greatly varies among individuals and that this variation can be attributed to several commonly measured individual traits, which sheds light on the mechanisms shaping heritable endocrine phenotypes.


Assuntos
Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/administração & dosagem , Ovário/crescimento & desenvolvimento , Personalidade , Aves Canoras/fisiologia , Animais , Variação Biológica Individual , Feminino , Ovário/efeitos dos fármacos
9.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371403

RESUMO

The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.


Assuntos
Expressão Gênica , Comportamento de Nidação , Reprodução , Aves Canoras/fisiologia , Animais , Variação Biológica Individual , Feminino , Hipotálamo/fisiologia , Fígado/fisiologia , Ovário/fisiologia , Estações do Ano , Aves Canoras/genética
10.
J Evol Biol ; 31(8): 1127-1137, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29791058

RESUMO

Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait-specific Qst and Fst . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Qst -Fst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Qst -Fst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.


Assuntos
Comportamento Animal/fisiologia , Fluxo Gênico , Repetições de Microssatélites/genética , Passeriformes/genética , Passeriformes/fisiologia , Seleção Genética , Distribuição Animal , Animais , Ecossistema , Variação Genética , Característica Quantitativa Herdável
11.
Mol Ecol ; 25(8): 1801-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26678756

RESUMO

Personality traits are heritable and respond to natural selection, but are at the same time influenced by the ontogenetic environment. Epigenetic effects, such as DNA methylation, have been proposed as a key mechanism to control personality variation. However, to date little is known about the contribution of epigenetic effects to natural variation in behaviour. Here, we show that great tit (Parus major) lines artificially selected for divergent exploratory behaviour for four generations differ in their DNA methylation levels at the dopamine receptor D4 (DRD4) gene. This D4 receptor is statistically associated with personality traits in both humans and nonhuman animals, including the great tit. Previous work in this songbird failed to detect functional genetic polymorphisms within DRD4 that could account for the gene-trait association. However, our observation supports the idea that DRD4 is functionally involved in exploratory behaviour but that its effects are mediated by DNA methylation. While the exact mechanism underlying the transgenerational consistency of DRD4 methylation remains to be elucidated, this study shows that epigenetic mechanisms are involved in shaping natural variation in personality traits. We outline how this first finding provides a basis for investigating the epigenetic contribution to personality traits in natural systems and its subsequent role for understanding the ecology and evolution of behavioural consistency.


Assuntos
Metilação de DNA , Comportamento Exploratório , Passeriformes/genética , Personalidade/genética , Receptores de Dopamina D4/genética , Animais , Comportamento Animal , Ilhas de CpG , Epigênese Genética , Feminino , Masculino , Análise de Sequência de DNA , Fatores Sexuais
12.
PLoS Biol ; 11(4): e1001517, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565055

RESUMO

Temperature has a strong effect on the seasonal timing of life-history stages in both mammals and birds, even though these species can regulate their body temperature under a wide range of ambient temperatures. Correlational studies showing this effect have recently been supported by experiments demonstrating a direct, causal relationship between ambient temperature and seasonal timing. Predicting how endotherms will respond to global warming requires an understanding of the physiological mechanisms by which temperature affects the seasonal timing of life histories. These mechanisms, however, remain obscure. We outline a road map for research aimed at identifying the pathways through which temperature is translated into seasonal timing.


Assuntos
Aves/fisiologia , Roedores/fisiologia , Estações do Ano , Migração Animal , Animais , Aquecimento Global , Hibernação , Humanos , Comportamento Sexual Animal/fisiologia , Temperatura
13.
Horm Behav ; 68: 25-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24928570

RESUMO

This article is part of a Special Issue "Chemosignals and Reproduction". Chemical cues were probably the first cues ever used to communicate and are still ubiquitous among living organisms. Birds have long been considered an exception: it was believed that birds were anosmic and relied on their acute visual and acoustic capabilities. Birds are however excellent smellers and use odors in various contexts including food searching, orientation, and also breeding. Successful reproduction in most vertebrates involves the exchange of complex social signals between partners. The first evidence for a role of olfaction in reproductive contexts in birds only dates back to the seventies, when ducks were shown to require a functional sense of smell to express normal sexual behaviors. Nowadays, even if the interest for olfaction in birds has largely increased, the role that bodily odors play in reproduction still remains largely understudied. The few available studies suggest that olfaction is involved in many reproductive stages. Odors have been shown to influence the choice and synchronization of partners, the choice of nest-building material or the care for the eggs and offspring. How this chemical information is translated at the physiological level mostly remains to be described, although available evidence suggests that, as in mammals, key reproductive brain areas like the medial preoptic nucleus are activated by relevant olfactory signals. Olfaction in birds receives increasing attention and novel findings are continuously published, but many exciting discoveries are still ahead of us, and could make birds one of the animal classes with the largest panel of developed senses ever described.


Assuntos
Aves/fisiologia , Feromônios/fisiologia , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Animais
14.
Gen Comp Endocrinol ; 190: 164-9, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23470654

RESUMO

Many bird species have advanced their seasonal timing in response to global warming, but we still know little about the causal effect of temperature. We carried out experiments in climate-controlled aviaries to investigate how temperature affects luteinizing hormone, prolactin, gonadal development, timing of egg laying and onset of moult in male and female great tits. We used both natural and artificial temperature patterns to identify the temperature characteristics that matter for birds. Our results show that temperature has a direct, causal effect on onset of egg-laying, and in particular, that it is the pattern of increase rather than the absolute temperature that birds use. Surprisingly, the pre-breeding increases in plasma LH, prolactin and in gonadal size are not affected by increasing temperature, nor do they correlate with the onset of laying. This suggests that the decision to start breeding and its regulatory mechanisms are fine-tuned by different factors. We also found similarities between siblings in the timing of both the onset of reproduction and associated changes in plasma LH, prolactin and gonadal development. In conclusion, while temperature affects the timing of egg laying, the neuroendocrine system does not seem to be regulated by moderate temperature changes. This lack of responsiveness may restrain the advance in the timing of breeding in response to climate change. But as there is heritable genetic variation on which natural selection can act, microevolution can take place, and may represent the only way to adapt to a warming world.


Assuntos
Oviposição/fisiologia , Passeriformes/metabolismo , Passeriformes/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Mudança Climática , Feminino , Temperatura
15.
Am Nat ; 179(2): E55-69, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22218320

RESUMO

Timing of reproduction in temperate-zone birds is strongly correlated with spring temperature, with an earlier onset of breeding in warmer years. Females adjust their timing of egg laying between years to be synchronized with local food sources and thereby optimize reproductive output. However, climate change currently disrupts the link between predictive environmental cues and spring phenology. To investigate direct effects of temperature on the decision to lay and its genetic basis, we used pairs of great tits (Parus major) with known ancestry and exposed them to simulated spring scenarios in climate-controlled aviaries. In each of three years, we exposed birds to different patterns of changing temperature. We varied the timing of a temperature change, the daily temperature amplitude, and the onset and speed of a seasonal temperature rise. We show that females fine-tune their laying in response to a seasonal increase in temperature, whereas mean temperature and daily temperature variation alone do not affect laying dates. Luteinizing hormone concentrations and gonadal growth in early spring were not influenced by temperature or temperature rise, possibly posing a constraint to an advancement of breeding. Similarities between sisters in their laying dates indicate genetic variation in cue sensitivity. These results refine our understanding of how changes in spring climate might affect the mismatch in avian timing and thereby population viability.


Assuntos
Fotoperíodo , Reprodução , Aves Canoras/fisiologia , Temperatura , Animais , Sinais (Psicologia) , Feminino , Laparotomia/veterinária , Hormônio Luteinizante/sangue , Masculino , Muda , Países Baixos , Ovário/crescimento & desenvolvimento , Modelos de Riscos Proporcionais , Estações do Ano , Testículo/crescimento & desenvolvimento
16.
Gen Comp Endocrinol ; 176(1): 1-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22222933

RESUMO

Seasonal timing is studied by ecologists and physiologists alike and it is now widely recognized that further integration of these fields is needed for a full understanding of phenology. This is especially true in the light of the impact of global climate change on living organisms. In studies of avian reproduction, one obstacle to this integration is that ecologists and physiologists do not allocate their research efforts equally to males and females. The physiological orchestration of breeding stages has been studied almost exclusively in males, while in avian ecology and evolutionary biology females are more often considered. This sex bias has severe implications: sexes differ in the way they use external cues to organize their life cycles, but often cue in on each other's physiology and behavior. The simultaneous investigation of both males and females within single studies is thus essential. In this review, I begin by illustrating the sex-bias in studies and attempt to explain its origin. I then provide a number of examples in which focusing on a single sex would have resulted in misleading conclusions. Finally, I review some classical studies of female reproductive physiology that have promoted and developed research on the "forgotten-sex".


Assuntos
Aves/fisiologia , Mudança Climática , Ecologia/métodos , Fisiologia/métodos , Caracteres Sexuais , Animais , Feminino , Masculino , Reprodução/fisiologia
17.
Gen Comp Endocrinol ; 179(1): 53-62, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22884573

RESUMO

Most animals reproduce seasonally. They time their reproduction in response to environmental cues, like increasing photoperiod and temperature, which are predictive for the time of high food availability. Although individuals of a population use the same cues, they vary in their onset of reproduction, with some animals reproducing consistently early or late. In avian research, timing of reproduction often refers to the laying date of the first egg, which is a key determinant of fitness. Experiments measuring temporal patterns of reproductive hormone concentrations or gonadal size under controlled conditions in response to a cue commonly assume that these proxies are indicative of the timing of egg laying. This assumption often remains untested, with few studies reporting both reproductive development and the onset of laying. We kept in total 144 pairs of great tits (Parus major) in separate climate-controlled aviaries over 4 years to correlate pre-breeding plasma luteinizing hormone (LH), prolactin (PRL) and gonadal growth with the timing of laying. Individuals varied consistently in hormone concentrations over spring, but this was not directly related to the timing of gonadal growth, nor with the laying date of the first egg. The timing of gonadal development in both sexes was similarly not correlated with the timing of laying. This demonstrates the female's ability to adjust the onset of laying to environmental conditions irrespective of substantial differences in pre-laying development. We conclude that stages of reproductive development are regulated by different cues, and therefore egg laying dates need to be studied to measure the influences of environmental cues on timing of seasonal reproduction.


Assuntos
Passeriformes/fisiologia , Estações do Ano , Comportamento Sexual Animal , Animais , Feminino , Hormônio Luteinizante/sangue , Masculino , Folículo Ovariano/crescimento & desenvolvimento , Passeriformes/crescimento & desenvolvimento , Prolactina/sangue , Reprodução , Testículo/crescimento & desenvolvimento , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-20490809

RESUMO

Birds are anosmic or at best microsmatic… This misbelief persisted until very recently and has strongly influenced the outcome of communication studies in birds, with olfaction remaining neglected as compared to acoustic and visual channels. However, there is now clear empirical evidence showing that olfaction is perfectly functional in birds and birds use olfactory information in a variety of ethological contexts. Although the existence of pheromones has never been formally demonstrated in this vertebrate class, different groups of birds, such as petrels, auklets and ducks have been shown to produce specific scents that could play a significant role in within-species social interactions. Behavioral experiments have indeed demonstrated that these odors influence the behavior of conspecifics. Additionally, in quail, deprivation of olfactory inputs decreases neuronal activation induced by sexual interactions with a female. It seems therefore well established that birds enjoy a functional sense of smell and a fast growing body of experimental evidence suggests that they use this channel of olfactory communication to control their social life. The unequivocal identification of an avian pheromone is, however, still ahead of us but there are now many exciting opportunities to unravel the behavioral and physiological particularities of chemical communication in birds.


Assuntos
Comportamento Animal/fisiologia , Aves/fisiologia , Feromônios/fisiologia , Comportamento Sexual Animal/fisiologia , Comunicação Animal , Animais , Atrativos Sexuais/fisiologia , Especificidade da Espécie
19.
Proc Biol Sci ; 276(1665): 2323-31, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19324731

RESUMO

Many bird species reproduce earlier in years with high spring temperatures, but little is known about the causal effect of temperature. Temperature may have a direct effect on timing of reproduction but the correlation may also be indirect, for instance via food phenology. As climate change has led to substantial shifts in timing, it is essential to understand this causal relationship to predict future impacts of climate change. We tested the direct effect of temperature on laying dates in great tits (Parus major) using climatized aviaries in a 6-year experiment. We mimicked the temperature patterns from two specific years in which our wild population laid either early ('warm' treatment) or late ('cold' treatment). Laying dates were affected by temperature directly. As the relevant temperature period started three weeks prior to the mean laying date, with a range of just 4 degrees C between the warm and the cold treatments, and as the birds were fed ad libitum, it is likely that temperature acted as a cue rather than lifting an energetic constraint on the onset of egg production. We furthermore show a high correlation between the laying dates of individuals reproducing both in aviaries and in the wild, validating investigations of reproduction of wild birds in captivity. Our results demonstrate that temperature has a direct effect on timing of breeding, an important step towards assessing the implication of climate change on seasonal timing.


Assuntos
Reprodução/fisiologia , Aves Canoras/fisiologia , Temperatura , Animais , Feminino , Masculino
20.
J Biol Rhythms ; 32(4): 323-333, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28745147

RESUMO

Artificial light at night disturbs the daily rhythms of many organisms. To what extent this disturbance depends on the intensity and spectral composition of light remain obscure. Here, we measured daily activity patterns of captive blue tits ( Cyanistes caeruleus) exposed to similar intensities of green, red, or white light at night. Birds advanced their onset of activity in the morning under all light colors but more under red and white light than under green light. Offset of activity was slightly delayed in all light colors. The total activity over a 24-h period did not change but birds moved a part of their daily activity into the night. Since the effect of red and white lights are comparable, we tested the influence of light intensity in a follow-up experiment, where we compared the activity of the birds under different intensities of green and white light only. While in the higher range of intensities, the effects of white and green light were comparable; at lower intensities, green light had a less disturbing effect as compared with white light on daily rhythms in blue tits. Our results show that the extent of this disturbance can be mitigated by modulating the spectral characteristics and intensity of outdoor lighting, which is now feasible through the use of LED lighting.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz , Atividade Motora/efeitos da radiação , Animais , Cor , Estimulação Luminosa , Aves Canoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA