Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
2.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580665

RESUMO

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética , DNA Polimerase teta
3.
Nucleic Acids Res ; 51(17): 9144-9165, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37526271

RESUMO

FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.


Assuntos
DNA Helicases , Replicação do DNA , Rad51 Recombinase , Humanos , DNA Helicases/genética , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
4.
Nucleic Acids Res ; 51(20): 11056-11079, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823600

RESUMO

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Assuntos
Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo
5.
Nature ; 563(7732): 522-526, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464262

RESUMO

Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.


Assuntos
Proteína BRCA1/deficiência , Dineínas do Citoplasma/metabolismo , DNA/metabolismo , Genes BRCA1 , Proteína Homóloga a MRE11/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA1/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Edição de Genes , Instabilidade Genômica/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Reparo de DNA por Recombinação/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692124

RESUMO

Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP ribose) polymerase (PARP)-dependent manner, to DNA breaks and promotes ATR/CHK1 signaling, DNA-end resection, and subsequent homologous recombination. Moreover, we identify E4F1 as a regulator of the ATP-dependent chromatin remodeling SWI/SNF complex in DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and together with PARP-1 mediates its recruitment to DNA lesions. We also report that a proportion of human breast cancers show amplification and overexpression of E4F1 or BRG1 that are mutually exclusive with BRCA1/2 alterations. Together, these results reveal a function of E4F1 in the DNA damage response that orchestrates proper signaling and repair of double-strand breaks and document a molecular mechanism for its essential role in maintaining genome integrity and cell survival.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Mama/genética , Proliferação de Células , Sobrevivência Celular , Montagem e Desmontagem da Cromatina , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Recombinação Homóloga , Humanos , Ligação Proteica , Proteínas Repressoras/deficiência , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência
7.
Trends Biochem Sci ; 44(3): 226-240, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30638972

RESUMO

Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.


Assuntos
Proteína BRCA2/metabolismo , Anemia de Fanconi/metabolismo , Animais , Proteína BRCA2/genética , Dano ao DNA/genética , Anemia de Fanconi/genética , Feminino , Humanos , Mutação/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
8.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500463

RESUMO

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Autoantígeno Ku/metabolismo , Fatores de Processamento de RNA/metabolismo , Alquilantes/efeitos adversos , Alquilantes/farmacologia , Camptotecina/efeitos adversos , Camptotecina/farmacologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/metabolismo , Glioblastoma/tratamento farmacológico , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Interferência de RNA , Fatores de Processamento de RNA/genética , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Temozolomida/efeitos adversos , Temozolomida/farmacologia
9.
Nucleic Acids Res ; 47(14): 7532-7547, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31219578

RESUMO

Fanconi Anemia (FA) clinical phenotypes are heterogenous and rely on a mutation in one of the 22 FANC genes (FANCA-W) involved in a common interstrand DNA crosslink-repair pathway. A critical step in the activation of FA pathway is the monoubiquitination of FANCD2 and its binding partner FANCI. To better address the clinical phenotype associated with FANCI and the epistatic relationship with FANCD2, we created the first conditional inactivation model for FANCI in mouse. Fanci -/- mice displayed typical FA features such as delayed development in utero, microphtalmia, cellular sensitivity to mitomycin C, occasional limb abnormalities and hematological deficiencies. Interestingly, the deletion of Fanci leads to a strong meiotic phenotype and severe hypogonadism. FANCI was localized in spermatocytes and spermatids and in the nucleus of oocytes. Both FANCI and FANCD2 proteins co-localized with RPA along meiotic chromosomes, albeit at different levels. Consistent with a role in meiotic recombination, FANCI interacted with RAD51 and stimulated D-loop formation, unlike FANCD2. The double knockout Fanci-/- Fancd2-/- also showed epistatic relationship for hematological defects while being not epistatic with respect to generating viable mice in crosses of double heterozygotes. Collectively, this study highlights common and distinct functions of FANCI and FANCD2 during mouse development, meiotic recombination and hematopoiesis.


Assuntos
Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Espermatócitos/metabolismo
10.
Nucleic Acids Res ; 45(14): 8341-8357, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28666371

RESUMO

Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Sinais de Localização Nuclear/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , Microscopia de Fluorescência , Mutação , Ligação Proteica , Interferência de RNA , Transdução de Sinais/genética , Ubiquitinação
11.
Nucleic Acids Res ; 45(5): 2644-2657, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28158555

RESUMO

One typical mechanism to promote genomic instability, a hallmark of cancer, is to inactivate tumor suppressors, such as PALB2. It has recently been reported that mutations in PALB2 increase the risk of breast cancer by 8-9-fold by age 40 and the life time risk is ∼3-4-fold. To date, predicting the functional consequences of PALB2 mutations has been challenging as they lead to different cancer risks. Here, we performed a structure-function analysis of PALB2, using PALB2 truncated mutants (R170fs, L531fs, Q775X and W1038X), and uncovered a new mechanism by which cancer cells could drive genomic instability. Remarkably, the PALB2 W1038X mutant, harboring a mutation in its C-terminal domain, is still proficient in stimulating RAD51-mediated recombination in vitro, although it is unusually localized to the cytoplasm. After further investigation, we identified a hidden NES within the WD40 domain of PALB2 and found that the W1038X truncation leads to the exposure of this NES to CRM1, an export protein. This concept was also confirmed with another WD40-containing protein, RBBP4. Consequently, our studies reveal an unreported mechanism linking the nucleocytoplasmic translocation of PALB2 mutants to cancer formation.


Assuntos
Mutação , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Citoplasma/metabolismo , DNA/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Células HEK293 , Humanos , Carioferinas/metabolismo , Sinais de Exportação Nuclear , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Deleção de Sequência , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Repetições WD40 , Proteína Exportina 1
12.
EMBO J ; 32(20): 2764-78, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24065131

RESUMO

The RNA chaperone Hfq is a key regulator of the function of small RNAs (sRNAs). Hfq has been shown to facilitate sRNAs binding to target mRNAs and to directly regulate translation through the action of sRNAs. Here, we present evidence that Hfq acts as the repressor of cirA mRNA translation in the absence of sRNA. Hfq binding to cirA prevents translation initiation, which correlates with cirA mRNA instability. In contrast, RyhB pairing to cirA mRNA promotes changes in RNA structure that displace Hfq, thereby allowing efficient translation as well as mRNA stabilization. Because CirA is a receptor for the antibiotic colicin Ia, in addition to acting as an Fur (Ferric Uptake Regulator)-regulated siderophore transporter, translational activation of cirA mRNA by RyhB promotes colicin sensitivity under conditions of iron starvation. Altogether, these results indicate that Fur and RyhB modulate an unexpected feed-forward loop mechanism related to iron physiology and colicin sensitivity.


Assuntos
Colicinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/fisiologia , Chaperonas Moleculares/fisiologia , RNA Bacteriano/fisiologia , Receptores de Superfície Celular/genética , Ativação Transcricional , Sequência de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/antagonistas & inibidores , Ferro/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Dados de Sequência Molecular , Ligação Proteica , Biossíntese de Proteínas/genética , RNA Bacteriano/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
13.
Nucleic Acids Res ; 43(21): 10308-20, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26546513

RESUMO

Bacteria express large numbers of non-coding, regulatory RNAs known as 'small RNAs' (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.


Assuntos
Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA/métodos , Catalase/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Fases de Leitura Aberta , Proteínas Periplásmicas/genética , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(50): E3444-53, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23169642

RESUMO

Riboswitches are mRNA regulatory elements that control gene expression by altering their structure in response to specific metabolite binding. In bacteria, riboswitches consist of an aptamer that performs ligand recognition and an expression platform that regulates either transcription termination or translation initiation. Here, we describe a dual-acting riboswitch from Escherichia coli that, in addition to modulating translation initiation, also is directly involved in the control of initial mRNA decay. Upon lysine binding, the lysC riboswitch adopts a conformation that not only inhibits translation initiation but also exposes RNase E cleavage sites located in the riboswitch expression platform. However, in the absence of lysine, the riboswitch folds into an alternative conformation that simultaneously allows translation initiation and sequesters RNase E cleavage sites. Both regulatory activities can be individually inhibited, indicating that translation initiation and mRNA decay can be modulated independently using the same conformational switch. Because RNase E cleavage sites are located in the riboswitch sequence, this riboswitch provides a unique means for the riboswitch to modulate RNase E cleavage activity directly as a function of lysine. This dual inhibition is in contrast to other riboswitches, such as the thiamin pyrophosphate-sensing thiM riboswitch, which triggers mRNA decay only as a consequence of translation inhibition. The riboswitch control of RNase E cleavage activity is an example of a mechanism by which metabolite sensing is used to regulate gene expression of single genes or even large polycistronic mRNAs as a function of environmental changes.


Assuntos
Aspartato Quinase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Riboswitch/genética , Sequência de Bases , Sítios de Ligação/genética , Endorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Lisina/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Bacteriano/química , RNA Mensageiro/química
16.
Nucleic Acids Res ; 40(20): 10287-301, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22941645

RESUMO

After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Cromatina/metabolismo , Proteínas de Ligação a DNA , Células HeLa , Recombinação Homóloga , Humanos , Camundongos , Proteínas Associadas à Matriz Nuclear/antagonistas & inibidores , Proteínas Associadas à Matriz Nuclear/química , Fatores de Transcrição de Octâmero/antagonistas & inibidores , Fatores de Transcrição de Octâmero/química , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Radiação Ionizante
17.
Nucleic Acids Res ; 40(12): 5497-510, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22402492

RESUMO

Polycomb group (PcG) proteins are involved in epigenetic silencing where they function as major determinants of cell identity, stem cell pluripotency and the epigenetic gene silencing involved in cancer development. Recently numerous PcG proteins, including CBX4, have been shown to accumulate at sites of DNA damage. However, it remains unclear whether or not CBX4 or its E3 sumo ligase activity is directly involved in the DNA damage response (DDR). Here we define a novel role for CBX4 as an early DDR protein that mediates SUMO conjugation at sites of DNA lesions. DNA damage stimulates sumoylation of BMI1 by CBX4 at lysine 88, which is required for the accumulation of BMI1 at DNA damage sites. Moreover, we establish that CBX4 recruitment to the sites of laser micro-irradiation-induced DNA damage requires PARP activity but does not require H2AX, RNF8, BMI1 nor PI-3-related kinases. The importance of CBX4 in the DDR was confirmed by the depletion of CBX4, which resulted in decreased cellular resistance to ionizing radiation. Our results reveal a direct role for CBX4 in the DDR pathway.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Sumoilação , Animais , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Células HEK293 , Humanos , Ligases , Lisina/metabolismo , Camundongos , Proteínas Nucleares/química , Poli(ADP-Ribose) Polimerases/metabolismo , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Inibidoras de STAT Ativados/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Repressoras/química , Ubiquitina-Proteína Ligases
18.
Artigo em Inglês | MEDLINE | ID: mdl-38590128

RESUMO

The use of information and communication technologies (ICT) is a huge part of adolescents' lives, especially by those living with a mental illness. However, very few studies explore their experience with the use of ICT and how it affects their health. The purpose of this study was to better understand the use of ICT by adolescents living with a mental illness. A scoping review was undertaken using Arksey and O'Malley's method to explore this understudied topic. The following databases were searched: Medline, CINAHL and Psychology and Behavioural Sciences Collection. Studies published between 2017 and 2022 were included. Data were analysed using a data extraction and an analysis grid developed by the research team. Of 1984 articles, only seven met the inclusion criteria. These articles allowed for a better understanding of the type of mental illness these young ICT users had, the type of ICT they use and their overall experience using ICT. The diagnoses most associated with the use of these ICT were suicidal ideation, depression, anxiety and eating illnesss. Types of ICT used were very diverse and adolescents had both positive and negative experiences using these ICT. Very few interventions using ICT were developed according to the needs of adolescents with mental illness. These adolescents often cope with the help of ICT and can have an overall positive experience. Their experience can also be negative as some of them were exposed to suicide-related and violent content. Future research is needed to better understand the best ICT interventions for these young people.

19.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291334

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Assuntos
Corpo Estriado , Doença de Huntington , Humanos , Animais , Cerebelo/metabolismo , Doença de Huntington/genética , Modelos Animais de Doenças
20.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333326

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA