Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biochem Mol Toxicol ; 36(5): e23007, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35199402

RESUMO

Metformin is the first-line drug to treat type 2 diabetes mellitus. Its mechanism of action is still debatable, and recent studies report that metformin attenuates oxidative stress. This study evaluated the in vitro antioxidant effects of a broad range of metformin concentrations on insulin-producing cells. The cell cycle, metabolism, glucose-stimulated insulin secretion, and cell death were evaluated to determine the biguanide effects on beta-cell function and survival. Antioxidant potential was based on reactive oxygen species (ROS), reduced glutathione (GSH), oxidative stress biomarker levels, and antioxidant enzyme and transcriptional factor Nrf2 activities. The results demonstrate that metformin disrupted GSIS in a concentration-dependent manner, lowered insulin content, and attenuated beta-cell metabolism. At high concentrations, metformin induced cell death and cell cycle arrest as well as increased ROS generation, consequently reducing GSH content. Although carbonylated protein content was elevated, indicating oxidative stress, the antioxidant enzyme and Nrf2 activities were not altered. In conclusion, our results show that metformin disrupts pancreatic beta-cell functionality but does not exert a putative antioxidant effect. It is important to note that the drug could potentially affect beta-cells, especially at high circulating levels.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Metformina , Animais , Antioxidantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Cell Biochem Funct ; 39(2): 335-343, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32911572

RESUMO

Lixisenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is used in the treatment of type 2 diabetes mellitus (T2DM). It increases insulin (INS) secretion and can decrease INS resistance, improving metabolic disorders in this disease. However, its effects on metabolic disturbances in cancer-bearing, which also exhibit decreased INS secretion and INS resistance, changes that may contribute to weight loss (cachexia), have not yet been evaluated. The purpose of this study was to investigate the lixisenatide treatment effects on mild cachexia and related metabolic abnormalities in Walker-256 tumour-bearing rats. Lixisenatide (50 µg kg-1 , SC) was administered once daily, for 6 days, after inoculation of Walker-256 tumour cells. Acute lixisenatide treatment did not improve hypoinsulinemia, INS secretion and INS resistance of tumour-bearing rats. It also did not prevent the reduced glucose and increased triacylglycerol and lactate in the blood and nor the loss of retroperitoneal and epididymal fat of these animals. However, acute lixisenatide treatment accentuated the body mass loss of tumour-bearing rats. Therefore, lixisenatide, unlike T2DM, does not improve hypoinsulinemia and INS resistance associated with cancer, evidencing that it does not have the same beneficial effects in these two diseases. In addition, lixisenatide aggravated weight loss of tumour-bearing rats, suggesting that its use for treatment of T2DM patients with cancer should be avoided. SIGNIFICANCE OF THE STUDY: Lixisenatide increases insulin secretion and appears to reduce insulin resistance in T2DM. However, lixisenatide treatment does not improve hypoinsulinemia and insulin resistance associated with cancer, as it does in T2DM, and aggravated weight loss, suggesting that its use for treatment of T2DM patients with cancer should be avoided.


Assuntos
Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Glicemia/análise , Caquexia/prevenção & controle , Linhagem Celular Tumoral , Glucose/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Transplante Heterólogo , Triglicerídeos/sangue , Redução de Peso/efeitos dos fármacos
3.
Plant Foods Hum Nutr ; 70(3): 297-303, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26092708

RESUMO

The aim of this study was to evaluate the effect of the colonic fermentation of unavailable carbohydrates from unripe banana (mass - UBM - and starch - UBS) over parameters related to glucose and insulin response in rats. Wistar male rats were fed either a control diet, a UBM diet (5 % resistant starch - RS) or a UBS diet (10 % RS) for 28 days. In vivo (oral glucose tolerance test) and in vitro (cecum fecal fermentation, pancreatic islet insulin secretion) analyses were performed. The consumption of UBM and UBS diets by Wistar rats for 28 days improved insulin/glucose ratio. Also, pancreatic islets isolated from the test groups presented significant lower insulin secretion compared to the control group, when the same in vitro glucose stimulation was done. Total short chain fatty acids produced were higher in both experimental groups in relation to the control group. These findings suggest that UBM and UBS diets promote colonic fermentation and can influence glycemic control, improving insulin sensitivity in rats.


Assuntos
Glicemia/metabolismo , Colo/metabolismo , Carboidratos da Dieta/metabolismo , Fermentação , Resistência à Insulina , Insulina/metabolismo , Musa/química , Animais , Ceco/metabolismo , Dieta , Ácidos Graxos Voláteis/metabolismo , Fezes , Teste de Tolerância a Glucose , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos Wistar , Amido/metabolismo
4.
Am J Physiol Endocrinol Metab ; 306(1): E109-20, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24253049

RESUMO

Excess of glucocorticoids (GCs) during pregnancy is strongly associated with the programming of glucose intolerance in the offspring. However, the impact of high GC levels on maternal metabolism is not clearly documented. This study aimed to test the hypothesis that mothers exposed to elevated levels of GCs might also display long-term disturbances in glucose homeostasis. Dexamethasone (DEX) was administered noninvasively to the mothers via drinking water between the 14th and the 19th days of pregnancy. Mothers were subjected to glucose and insulin tolerance tests at 1, 2, 3, 6, and 12 mo postweaning. Pregnant rats not treated with DEX and age-matched virgin rats were used as controls. Pancreatic islets were isolated at the 20th day of pregnancy and 12 mo postweaning in order to evaluate glucose-stimulated insulin secretion. The expression of the miR-29 family was also studied due to its responsiveness to GCs and its well-documented role in the regulation of pancreatic ß-cell function. Rats treated with DEX during pregnancy presented long-term glucose intolerance and impaired insulin secretion. These changes correlated with 1) increased expression of miR-29 and its regulator p53, 2) reduced expression of syntaxin-1a, a direct target of miR-29, and 3) altered expression of genes related to cellular senescence. Our data demonstrate that the use of DEX during pregnancy results in deleterious outcomes to the maternal metabolism, hallmarked by reduced insulin secretion and glucose intolerance. This maternal metabolic programming might be a consequence of time-sustained upregulation of miR-29s in maternal pancreatic islets.


Assuntos
Glicemia/metabolismo , Glucocorticoides/efeitos adversos , Homeostase/efeitos dos fármacos , MicroRNAs/genética , Regulação para Cima/efeitos dos fármacos , Animais , Glicemia/análise , Senescência Celular/genética , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Feminino , Idade Gestacional , Glucocorticoides/administração & dosagem , Intolerância à Glucose/etiologia , Teste de Tolerância a Glucose , Insulina/metabolismo , Secreção de Insulina , Gravidez , Cuidado Pré-Natal , RNA Mensageiro/análise , Ratos , Ratos Wistar , Sintaxina 1/genética , Proteína Supressora de Tumor p53/genética
5.
Cell Biochem Funct ; 31(1): 65-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22915345

RESUMO

Retinopathy, a common complication of diabetes, is characterized by an unbalanced production of nitric oxide (NO), a process regulated by nitric oxide synthase (NOS). We hypothesized that retinopathy might stem from changes in the insulin receptor substrate (IRS)/PI3K/AKT pathway and/or expression of NOS isoforms. Thus, we analysed the morphology and apoptosis index in retinas of obese rats in whom insulin resistance had been induced by a high-fat diet (HFD). Immunoblotting analysis revealed that the retinal tissue of HFD rats had lower levels of AKT(1) , eNOS and nNOS protein than those of samples taken from control animals. Furthermore, immunohistochemical analyses indicated higher levels of iNOS and 4-hydroxynonenal and a larger number of apoptotic nuclei in HFD rats. Finally, both the inner and outer retinal layers of HFD rats were thinner than those in their control counterparts. When considered alongside previous results, these patterns suggest two major ways in which HFD might impact animals: direct activity of ingested fatty acids and/or via insulin-resistance-induced changes in intracellular pathways. We discuss these possibilities in further detail and advocate the use of this animal model for further understanding relationships between retinopathy, metabolic syndrome and type 2 diabetes.


Assuntos
Gorduras na Dieta/toxicidade , Proteínas do Olho/fisiologia , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Degeneração Retiniana/etiologia , Animais , Apoptose , Astrócitos/patologia , Glicemia/análise , Retinopatia Diabética , Modelos Animais de Doenças , Ácidos Graxos/sangue , Proteínas Substratos do Receptor de Insulina/fisiologia , Resistência à Insulina , Peroxidação de Lipídeos , Lipídeos/sangue , Fígado/patologia , Masculino , Óxido Nítrico Sintase Tipo I/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Obesidade/sangue , Obesidade/complicações , Fosfatidilinositol 3-Quinases/fisiologia , Ratos , Ratos Wistar , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/sangue , Degeneração Retiniana/fisiopatologia , Transdução de Sinais
6.
J Cell Physiol ; 226(4): 1110-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20857410

RESUMO

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI--diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , NADPH Oxidases/metabolismo , Palmitatos/farmacologia , Superóxidos/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/genética , Oxirredução/efeitos dos fármacos , Proinsulina/genética , Proinsulina/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Antioxidants (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439552

RESUMO

In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in ß-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•- production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts ß-cells' function and survival during insulitis, NOX2 might be a potential target for designing therapies against early ß-cell dysfunction in the context of T1D onset.

8.
Nutrients ; 12(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283715

RESUMO

Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote ß -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.


Assuntos
Tecido Adiposo/metabolismo , Ingestão de Alimentos , Jejum/efeitos adversos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Redução de Peso , Tecido Adiposo/patologia , Animais , Apoptose , Jejum/fisiologia , Feminino , Insulina/sangue , Secreção de Insulina , Músculos/metabolismo , Músculos/patologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
9.
Sci Rep ; 8(1): 13061, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166558

RESUMO

The exposure of pancreatic islets to high glucose is believed to be one of the causal factors of the progressive lowering of insulin secretion in the development of type 2 diabetes. The progression of beta cell failure to type 2 diabetes is preceded by an early positive increase in the insulin secretory response to glucose, which is only later followed by a loss in the secretion capacity of pancreatic islets. Here we have investigated the electrophysiological mechanisms underlying the early glucose-mediated gain of function. Rodent pancreatic islets or dispersed islet cells were cultured in medium containing either 5.6 (control) or 16.7 (high-glucose) mM glucose for 24 h after isolation. Glucose-stimulated insulin secretion was enhanced in a concentration-dependent manner in high glucose-cultured islets. This was associated with a positive effect on beta cell exocytotic capacity, a lower basal KATP conductance and a higher glucose sensitivity to fire action potentials. Despite no changes in voltage-gated Ca2+ currents were observed in voltage-clamp experiments, the [Ca2+]I responses to glucose were drastically increased in high glucose-cultured cells. Of note, voltage-dependent K+ currents were decreased and their activation was shifted to more depolarized potentials by high-glucose culture. This decrease in voltage-dependent K+ channel (Kv) current may be responsible for the elevated [Ca2+]I response to metabolism-dependent and independent stimuli, associated with more depolarized membrane potentials with lower amplitude oscillations in high glucose-cultured beta cells. Overall these results show that beta cells improve their response to acute challenges after short-term culture with high glucose by a mechanism that involves modulation not only of metabolism but also of ion fluxes and exocytosis, in which Kv activity appears as an important regulator.


Assuntos
Técnicas de Cultura de Células , Glucose/toxicidade , Células Secretoras de Insulina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Capacitância Elétrica , Exocitose/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Espaço Intracelular/metabolismo , Canais KATP/metabolismo , Canais de Potássio/metabolismo , Ratos Wistar , Fatores de Tempo
10.
Int Rev Cytol ; 248: 1-41, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16487789

RESUMO

Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids for pancreatic islets in addition to supply in the blood. Lipids can be transferred from leukocytes (macrophages) to pancreatic islets in coculture. This latter process may provide an additional source of FAs that may play a significant role in the regulation of insulin secretion.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Adiponectina/metabolismo , Animais , Apoptose/fisiologia , Glicemia/metabolismo , Humanos , Insulina/metabolismo , Canais Iônicos/metabolismo , Proteína Quinase C/metabolismo , Receptor de Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
11.
Mol Cell Endocrinol ; 439: 354-362, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27664519

RESUMO

High glucose-induced oxidative stress and increased NADPH oxidase-2 (NOX2) activity may contribute to the progressive decline of the functional ß-cell mass in type 2 diabetes. To test that hypothesis, we characterized, in islets from male NOX2 knockout (NOX2-KO) and wild-type (WT) C57BL/6J mice cultured for up to 3 weeks at 10 or 30 mmol/l glucose (G10 or G30), the in vitro effects of glucose on cytosolic oxidative stress using probes sensing glutathione oxidation (GRX1-roGFP2), thiol oxidation (roGFP1) or H2O2 (roGFP2-Orp1), on ß-cell stimulus-secretion coupling events and on ß-cell apoptosis. After 1-2 days of culture in G10, the glucose stimulation of insulin secretion (GSIS) was ∼1.7-fold higher in NOX2-KO vs. WT islets at 20-30 mmol/l glucose despite similar rises in NAD(P)H and intracellular calcium concentration ([Ca2+]i) and no differences in cytosolic GRX1-roGFP2 oxidation. After long-term culture at G10, roGFP1 and roGFP2-Orp1 oxidation and ß-cell apoptosis remained low, and the glucose-induced rises in NAD(P)H, [Ca2+]i and GSIS were similarly preserved in both islet types. After prolonged culture at G30, roGFP1 and roGFP2-Orp1 oxidation increased in parallel with ß-cell apoptosis, the glucose sensitivity of the NADPH, [Ca2+]i and insulin secretion responses increased, the maximal [Ca2+]i response decreased, but maximal GSIS was preserved. These responses were almost identical in both islet types. In conclusion, NOX2 is a negative regulator of maximal GSIS in C57BL/6J mouse islets, but it does not detectably contribute to the in vitro glucotoxic induction of cytosolic oxidative stress and alterations of ß-cell survival and function.


Assuntos
Glucose/toxicidade , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , NADPH Oxidase 2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/deficiência , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Compostos de Sulfidrila/metabolismo , Técnicas de Cultura de Tecidos
12.
FEBS Lett ; 580(1): 285-90, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16376341

RESUMO

The effect of dehydroepiandrosterone (DHEA) on pancreatic islet function of aged rats, an animal model with impaired glucose-induced insulin secretion, was investigated. The following parameters were examined: morphological analysis of endocrine pancreata by immunohistochemistry; protein levels of insulin receptor, IRS-1, IRS-2, PI 3-kinase, Akt-1, and Akt-2; and static insulin secretion in isolated pancreatic islets. Pancreatic islets from DHEA-treated rats showed an increased beta-cell mass accompanied by increased Akt-1 protein level but reduced IR, IRS-1, and IRS-2 protein levels and enhanced glucose-stimulated insulin secretion. The present results suggest that DHEA may be a promising drug to prevent diabetes during aging.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Envelhecimento/metabolismo , Tamanho Celular/efeitos dos fármacos , Desidroepiandrosterona/administração & dosagem , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Substratos do Receptor de Insulina , Secreção de Insulina , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Fosfatidilinositol 3-Quinases/biossíntese , Fosfoproteínas/biossíntese , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar
13.
Mol Cell Endocrinol ; 251(1-2): 33-41, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16597486

RESUMO

The adaptation of pancreatic islets to pregnancy includes increased beta cell proliferation, expansion of islet mass, and increased insulin synthesis and secretion. Most of these adaptations are induced by prolactin (PRL). We have previously described that in vitro PRL treatment increases ERK3 expression in isolated rat pancreatic islets. This study shows that ERK3 is also upregulated during pregnancy. Islets from pregnant rats treated with antisense oligonucleotide targeted to the PRL receptor displayed a significant reduction in ERK3 expression. Immunohistochemical double-staining showed that ERK3 expression is restricted to pancreatic beta cells. Transfection with antisense oligonucleotide targeted to ERK3 abolished the insulin secretion stimulated by glucose in rat islets and by PMA in RINm5F cells. Therefore, we examined the participation of ERK3 in the activation of a cellular target involved in secretory events, the microtubule associated protein MAP2. PMA induced ERK3 phosphorylation that was companied by an increase in ERK3/MAP2 association and MAP2 phosphorylation. These observations provide evidence that ERK3 is involved in the regulation of stimulus-secretion coupling in pancreatic beta cells.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/biossíntese , Receptores da Prolactina/metabolismo , Animais , Células Cultivadas , Feminino , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Modelos Animais , Oligonucleotídeos Antissenso , Fosforilação , Gravidez , Ratos , Ratos Wistar , Acetato de Tetradecanoilforbol/farmacologia , Regulação para Cima
14.
Diabetes ; 52(6): 1457-63, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12765957

RESUMO

The presence of a phagocyte-like NAD(P)H oxidase in pancreatic beta-cells was investigated. Three NAD(P)H oxidase components were found in pancreatic islets by RT-PCR: gp91(PHOX), p22(PHOX), and p47(PHOX). The components p67(PHOX) and p47(PHOX) were also demonstrated by Western blotting. Through immunohistochemistry, p47(PHOX) was mainly found in the central area of the islet, confirming the expression of this component by insulin-producing cells. Activation of NAD(P)H oxidase complex in the beta-cells was also examined by immunohistochemistry. The pancreatic islets presented slower kinetics of superoxide production than HIT-T15 cells, neutrophils, and macrophages, but they reached 66% that of the neutrophil nitroblue tetrazolium (NBT) reduction after 2 h of incubation. Glucose (5.6 mmol/l) increased NBT reduction by 75% when compared with control. The involvement of protein kinase C (PKC) in the stimulatory effect of glucose was confirmed by incubation of islets with phorbol myristate acetate (a PKC activator) and bysindoylmaleimide (GF109203X) (a PKC-specific inhibitor). Diphenylene iodonium [an NAD(P)H oxidase inhibitor] abolished the increase of NBT reduction induced by glucose, confirming the NAD(P)H oxidase activity in pancreatic islets. Because reactive oxygen species are involved in intracellular signaling, the phagocyte-like NAD(P)H oxidase activation by glucose may play an important role for beta-cell functioning.


Assuntos
Ilhotas Pancreáticas/enzimologia , NADH NADPH Oxirredutases/genética , Fagócitos/enzimologia , Animais , Células Cultivadas , Primers do DNA , Etanol/farmacologia , Feminino , Imuno-Histoquímica , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Isoenzimas/genética , Cinética , NADPH Oxidases , Fagócitos/fisiologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxidos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
15.
Pancreas ; 44(2): 287-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25426612

RESUMO

OBJECTIVES: The aim of the study was to evaluate the potential changes induced by fish oil (FO) supplementation on the redox status of pancreatic islets from healthy rats. To test whether these effects were due to eicosapentaenoic acid and docosahexaenoic acid (ω-3), in vitro experiments were performed. METHODS: Rats were supplemented with FO, and pancreatic islets were obtained. Islets were also treated in vitro with palmitate (P) or eicosapentaenoic acid + docosahexaenoic acid (ω-3). Insulin secretion (GSIS), glucose oxidation, protein expression, and superoxide content were analyzed. RESULTS: The FO group showed a reduction in superoxide content. Moreover, FO reduced the expression of NAD(P)H oxidase subunits and increased superoxide dismutase, without altering ß-cell function. Palmitate increased ß-cell reactive oxygen species (ROS) production, apoptosis, and impaired GSIS. Under these conditions, ω-3 triggered a parallel reduction in ROS production and ß-cell apoptosis induced by P and protected against the impairment in GSIS. There was no difference in mitochondrial ROS production. CONCLUSIONS: Our results show that ω-3 protect pancreatic islets from alterations induced by P. In vivo FO supplementation modulates the redox state of pancreatic ß-cell. Considering that in vitro effects do not involve mitochondrial superoxide production, we can speculate that this protection might involve NAD(P)H oxidase activity.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ilhotas Pancreáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Glutationa/metabolismo , Insulina/sangue , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , NADPH Oxidases/metabolismo , Oxirredução , Ácido Palmítico/toxicidade , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
16.
FEBS Lett ; 544(1-3): 185-8, 2003 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12782313

RESUMO

Insulin stimulates its own secretion and synthesis by pancreatic beta-cells. Although the exact molecular mechanism involved is unknown, changes in beta-cell insulin signalling have been recognized as a potential link between insulin resistance and its impaired release, as observed in non-insulin-dependent diabetes. However, insulin resistance is also associated with elevated plasma levels of free fatty acids (FFA) that are well known modulators of insulin secretion by pancreatic islets. This information led us to investigate the effect of FFA on insulin receptor signalling in pancreatic islets. Exposure of pancreatic islets to palmitate caused up-regulation of several insulin-induced activities including tyrosine phosphorylation of insulin receptor and pp185. This is the first evidence that short exposure of these cells to 100 microM palmitate activates the early steps of insulin receptor signalling. 2-Bromopalmitate, a carnitine palmitoyl-CoA transferase-1 inhibitor, did not affect the effect of the fatty acid. Cerulenin, an acylation inhibitor, abolished the palmitate effect on protein levels and phosphorylation of insulin receptor. This result supports the proposition that protein acylation may be an important mechanism by which palmitate exerts its modulating effect on the intracellular insulin signalling pathway in rat pancreatic islets.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ácido Palmítico/farmacologia , Transdução de Sinais , Animais , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Feminino , Hipoglicemiantes/farmacologia , Immunoblotting , Ilhotas Pancreáticas/citologia , Palmitatos/farmacologia , Ácido Palmítico/metabolismo , Fosforilação , Ratos , Receptor de Insulina/metabolismo , Tirosina/metabolismo
17.
J Nutr Biochem ; 24(6): 1136-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23246156

RESUMO

We investigated the effect of fish oil supplementation for two consecutive generations on insulin sensitivity in rats. After the nursing period (21 days), female rats from the same prole were divided into two groups: (a) control group and (b) fish oil group. Female rats were supplemented with water (control) or fish oil at 1 g/kg body weight as a single bolus for 3 months. After this period, female rats were mated with male Wistar rats fed on a balanced chow diet (not supplemented). Female rats continued to receive supplementation throughout gestation and lactation periods. The same treatment was performed for the next two generations (G1 and G2). At 75 days of age, male offspring from G1 and G2 generations from both groups were used in the experiments. G1 rats did not present any difference with control rats. However, G2 rats presented reduction in glycemia and lipidemia and improvement in in vivo insulin sensitivity (model assessment of insulin resistance, insulin tolerance test) as well as in vitro insulin sensitivity in soleus muscle (glucose uptake and metabolism). This effect was associated with increased insulin-stimulated p38 MAP kinase phosphorylation and lower n-6/n-3 fatty acid ratio, but not with activation of proteins from insulin signaling (IR, IRS-1 and Akt). Global DNA methylation was decreased in liver but not in soleus muscle. These results suggest that long-term fish oil supplementation improves insulin sensitivity in association with increased insulin-stimulated p38 activation and decreased n-6:n-3 ratio in skeletal muscle and decreased global DNA methylation in liver.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Resistência à Insulina/fisiologia , Animais , Glicemia/metabolismo , Metilação de DNA , Ácidos Graxos Ômega-3/metabolismo , Feminino , Óleos de Peixe/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Life Sci ; 91(7-8): 244-9, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22820165

RESUMO

AIMS: NADPH oxidase (NOX) is a known source of superoxide anions in phagocytic and non-phagocytic cells. In this study, the presence of this enzyme in human pancreatic islets and the importance of NADPH oxidase in human ß-cell function were investigated. MAIN METHODS AND KEY FINDINGS: In isolated human pancreatic islets, the expression of NADPH oxidase components was evidenced by real-time PCR (p22(PHOX), p47(PHOX) and p67(PHOX)), Western blotting (p47(PHOX) and p67(PHOX)) and immunohistochemistry (p47(PHOX), p67(PHOX) and gp91(PHOX)). Immunohistochemistry experiments showed co-localization of p47(PHOX), p67(PHOX) and gp91(PHOX) (isoform 2 of NADPH oxidase-NOX2) with insulin secreting cells. Inhibition of NADPH oxidase activity impaired glucose metabolism and glucose-stimulated insulin secretion. SIGNIFICANCE: These findings demonstrate the presence of the main intrinsic components of NADPH oxidase comprising the NOX2 isoform in human pancreatic islets, whose activity also contributes to human ß-cell function.


Assuntos
Ilhotas Pancreáticas/enzimologia , NADPH Oxidases/metabolismo , Adulto , Sequência de Bases , Western Blotting , Primers do DNA , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , NADPH Oxidases/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real
19.
Endocrinology ; 153(5): 2178-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22374967

RESUMO

Diabetes mellitus is a product of low insulin sensibility and pancreatic ß-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Resistência à Insulina/fisiologia , Insulina/metabolismo , Melatonina/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Teste de Tolerância a Glucose , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Melatonina/farmacologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Ratos , Ratos Wistar
20.
Islets ; 3(5): 213-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750413

RESUMO

Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in ß-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic ß-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in ß-cells.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Secreção de Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA