RESUMO
(1) Background: In alpine skiing, senior athletes and especially women have a high risk of knee injury. This may also be related to muscular fatigue (MF) of the knee-stabilizing thigh muscles. This study investigates both the evolution of muscle activity (MA) and of MF of the thighs throughout an entire skiing day. (2) Methods: n = 38 female recreational skiers over 40 years of age performed four specific skiing tasks (plough turns, V-steps uphill, turns with short, and middle radii) at specific times, while freely skiing the rest of the day. Surface EMG of the thigh muscle groups (quadriceps and hamstrings) was measured using special wearables (EMG pants). Apart from standard muscle activity parameters, the EMG data were also processed in the frequency domain to calculate the mean frequency and its shift over the day as a metric of muscle fatigue. (3) Results: The EMG pants showed reliable signal quality over the entire day, with BMI not impacting this. MF increased during skiing before and for both muscle groups significantly (p < 0.006) during lunch. MF, however, was not reflected in the quadriceps-hamstrings ratio. The plough manoeuvre seems to require significantly (p < 0.003) more muscle dynamics than the three other tasks. (4) Conclusion: MF may be quantified over an entire skiing day and thus fatigue information could be given to the skier. This is of major importance for skiers at the beginner level dominantly performing plough turns. Crucial for all skiers: There is no regenerative effect of a 45-min lunch break.
Assuntos
Músculos Isquiossurais , Esqui , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Fadiga Muscular/fisiologia , Esqui/lesões , Músculo Esquelético , Músculo Quadríceps/fisiologia , Músculos Isquiossurais/fisiologiaRESUMO
In physiotherapy, there is still a lack of practical measurement options to track the progress of therapy or rehabilitation following injuries to the lower limbs objectively and reproducibly yet simply and with minimal effort and time. We aim at filling this gap with the design of an IMU (inertial measurement unit) system with only one sensor placed on the tibia edge. In our study, the IMU system evaluated a set of 10 motion tests by a score value for each test and stored them in a database for a more reliable longitudinal assessment of the progress. The sensor analyzed the different motion patterns and obtained characteristic physiological parameters, such as angle ranges, and spatial and angular displacements, such as knee valgus under load. The scores represent the patient's coordination, stability, strength and speed. To validate the IMU system, these scores were compared to corresponding values from a simultaneously recorded marker-based 3D video motion analysis of the measurements from five healthy volunteers. Score differences between the two systems were almost always within 1-3 degrees for angle measurements. Timing-related measurements were nearly completely identical. The tests on the valgus stability of the knee showed equally small deviations but should nevertheless be repeated with patients, because the healthy subjects showed no signs of instability.