Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 114(12): 2764-2774, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925014

RESUMO

Intramolecular junctions are a ubiquitous structure within DNA and RNA; three-way junctions in particular have high strain around the junction because of the lack of flexibility, preventing the junctions from adopting conformations that would allow for optimal folding. In this work, we used a combination of calorimetric and spectroscopic techniques to study the unfolding of four intramolecular three-way junctions. The control three-way junction, 3H, has the sequence d(GAAATTGCGCT5GCGCGTGCT5GCACAATTTC), which has three arms of different sequences. We studied three other three-way junctions in which one (2HS1H), two (HS12HS1), and three (HS1HS1HS1) cytosine bulges were placed at the junction to allow the arms to adopt a wider range of conformations that may potentially relieve strain. Through calorimetric studies, it was concluded that bulges produce only minor effects on the enthalpic and thermal stability at physiological salt concentrations for 2HS1H and HS1HS1HS1. HS12HS1 displays the strongest effect, with the GTGC stem lacking a defined transition. In addition to unfolding thermodynamics, the differential binding of counterions, water, and protons was determined. It was found that with each bulge, there was a large increase in the binding of counterions; this correlated with a decrease in the immobilization of structural water molecules. The increase in counterion uptake upon folding likely displaces binding of structural water, which is measured by the osmotic stress method, in favor of electrostricted waters. The cytosine bulges do not affect the binding of protons; this finding indicates that the bulges are not forming base-triplet stacks. These results indicate that bulges in junctions do not affect the unfolding profile or the enthalpy of oligonucleotides but do affect the number and amount of molecules immobilized by the junction.


Assuntos
DNA/química , Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Calorimetria , Citosina/química , DNA/genética , Prótons , RNA/genética , Termodinâmica , Água/química
2.
Biochemistry ; 57(39): 5666-5671, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30185020

RESUMO

Members of the uracil-DNA glycosylase (UDG) enzyme family recognize and bind uracil, sequestering it within the binding site pocket and catalyzing the cleavage of the base from the deoxyribose, leaving an abasic site. The recognition and binding are passive and rely on innate dynamic motions of DNA wherein base pairs undergo thermally induced breakage and conformational fluctuations. Once the uracil breaks from its base pair, it can be recognized and bound by the enzyme, which then alters its conformation for sequestration and catalysis. Our results suggest that the thymine to uracil substitution, which differs only by a single methyl group, causes a destabilization of the duplex thermodynamics, which would lead to an increase in the population of the extrahelical state and increase the probability of uracil being recognized and excised from DNA by UDG. This destabilization is dependent on the identity of the nearest-neighbor base-pair stacks; a G·C nearest neighbor leads to thermal and enthalpic destabilization that is weaker that that seen with two A·T neighbors. In addition, uracil substitution yields a nearest-neighbor increase in the counterion uptake of the duplexes but decreases the level of immobilization of structural water for all substituted duplexes regardless of the neighbor identity or number of substitutions.


Assuntos
DNA/química , Timina/química , Uracila-DNA Glicosidase/química , Uracila/química , Pareamento de Bases , DNA/genética , Mutação , Conformação de Ácido Nucleico , Cloreto de Sódio/química , Termodinâmica , Água/química
3.
Phys Chem Chem Phys ; 20(7): 5046-5056, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29388988

RESUMO

Tetraloops are a common way of changing the melting behavior of a DNA or RNA structure without changing the sequence of the stem. Because of the ubiquitous nature of tetraloops, our goal is to understand the effect a GCAA tetraloop, which belongs to the GNRA family of tetraloops, has on the unfolding thermodynamics of intramolecular junctions. Specifically, we have described the melting behavior of intramolecular three-way and four-way junctions where a T5 loop has been replaced with a GCAA tetraloops in different positions. Their thermodynamic profiles, including ΔnNa+ and ΔnW, were analyzed based on the position of the tetraloop. We obtained between -16.7 and -27.5 kcal mol-1 for all junctions studied. The experimental data indicates the influence of the GCAA tetraloop is primarily dictated by the native unfolding of the junction; if the tetraloop is placed on a stem that unfolds as a single domain when the tetraloop is not present, it will unfold as a single domain when the tetraloop is present but with a higher thermal stability. Conversely, if the tetraloop is placed on a stem which unfolds cooperatively with other stems when the tetraloop is not present, the tetraloop will increase the thermal stability of all the stems in the melting domain. The oligonucleotide structure and not the tetraloop itself affects ion uptake; three-way junctions do not gain an increase in ion uptake, but four-way junctions do. This is not the case for water immobilization, where the position of the tetraloop dictates the amount of water immobilized.


Assuntos
DNA/química , Modelos Moleculares , RNA/química , Sequência de Bases , Varredura Diferencial de Calorimetria , Temperatura Alta , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Termodinâmica , Água
4.
Biophys J ; 113(3): 529-539, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793208

RESUMO

Intramolecular three-way junctions are commonly found in both DNA and RNA. These structures are functionally relevant in ribozymes, riboswitches, rRNA, and during replication. In this work, we present a thermodynamic description of the unfolding of DNA intramolecular three-way junctions. We used a combination of spectroscopic and calorimetric techniques to investigate the folding/unfolding thermodynamics of two three-way junctions with a closed (Closed-J) or open (Open-J) junction and their appropriate control stem-loop motifs (GAAATT-Hp, CTATC-Hp, and Dumbbell). The overall results show that both junctions are stable over a wide range of salt concentrations. However, Open-J is more stable due to a higher enthalpy contribution from the formation of a higher number of basepair stacks whereas Closed-J has a defined structure and retains the basepair stacking of all three stems. The comparison of the experimental results of Closed-J and Open-J with those of their component stem-loop motifs allowed us to be more specific about their cooperative unfolding. For instance, Closed-J sacrifices thermal stability of the Dumbbell structure to maintain an overall folded state. At higher salt concentration, the simultaneous unfolding of the above domains is lost, resulting in the unfolding of the three separate stems. In contrast, the junction of Open-J in low salt retains the thermal and enthalpic stability of the Dumbbell structure although sacrificing stability of the CTATC stem. The relative stability of Dumbbell is the primary reason for the higher ΔG°(5), or free energy, value seen for Open-J at low salt. Higher salt not only maintains thermal stability of the Dumbbell structure in Open-J but causes the CTATC stem to fully fold.


Assuntos
DNA/química , Pareamento de Bases , Sequência de Bases , DNA/genética , Desnaturação de Ácido Nucleico , Temperatura de Transição
5.
J Am Chem Soc ; 139(41): 14443-14455, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28921984

RESUMO

Intramolecular four-way junctions are structures present during homologous recombination, repair of double stranded DNA breaks, and integron recombination. Because of the wide range of biological processes four-way junctions are involved in, understanding how and under what conditions these structures form is critical. In this work, we used a combination of spectroscopic and calorimetric techniques to present a complete thermodynamic description of the unfolding of a DNA four-way junction (FWJ) and its appropriate control stem-loop motifs (Dumbbell, GAAATT-Hp, CTATC-Hp, GTGC-Hp, and GCGC-Hp). The overall results show that the four-way junction increases the cooperative unfolding of its stems, although the reason for this is unclear, as the arms do not unfold as coaxial stacks, and thus its melting behavior cannot be accurately described by its control molecules. This is in contrast to what has been seen for two- and three-way junctions. In addition, the lack of base stacking and the ΔHvH/ΔHcal ratio seen at low salt indicate the four-way junction exists as a mixture of conformations, one of which is most likely the open-X structure which has unpaired bases at the junction. This was confirmed by single value decomposition of CD and UV spectra. This indicates that at low salt there is a third spectroscopically distinct species, while at higher salt there are only two species, folded and unfolded. Based on the enthalpy, Δnion, and ΔnW, the dominant folded structure at high salt is most likely the antiparallel stacked-X structure.


Assuntos
Calorimetria , DNA/química , Pareamento de Bases , Sequência de Bases , DNA/genética , Desnaturação de Ácido Nucleico , Análise Espectral , Termodinâmica
6.
Inorg Chem ; 56(11): 6459-6476, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28517938

RESUMO

Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinate protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.


Assuntos
Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Níquel/metabolismo , Compostos Organometálicos/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Cobalto/química , Proteínas de Escherichia coli/genética , Ácido Glutâmico/química , Ligantes , Modelos Moleculares , Níquel/química , Compostos Organometálicos/química , Proteínas Repressoras/genética
7.
Biochemistry ; 51(40): 7816-32, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22970729

RESUMO

Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.


Assuntos
Bactérias/metabolismo , Níquel/química , Níquel/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia
8.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 25-30, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929183

RESUMO

RcnR is a transcription factor that regulates the homeostasis of cobalt and nickel in bacterial cells. Escherichia coli RcnR was crystallized with DNA that encompasses the DNA-binding site. X-ray diffraction data were collected to 2.9 Šresolution. The crystal belonged to space group P6122 or P6522, with unit-cell parameters a = b = 73.59, c = 157.66 Å, α = ß = 90, γ = 120°.


Assuntos
Cobalto/química , Proteínas de Escherichia coli/química , Níquel/química , Proteínas Repressoras/química , Cobalto/metabolismo , Cristalografia por Raios X , DNA , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Modelos Moleculares , Níquel/metabolismo , Proteínas Repressoras/isolamento & purificação , Difração de Raios X
9.
Biochimie ; 157: 177-183, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502370

RESUMO

Kissing loop interactions (KLIs) are a common motif that is critical in retroviral dimerization, viroid replication, mRNA, and riboswitches. In addition, KLIs are currently used in a variety of biotechnology applications, such as in aptamer sensors, RNA scaffolds and to stabilize vaccines for therapeutics. Here we describe the thermodynamics of a basic intramolecular DNA capable of engaging in a KLI, consisting of two hairpins connected by a flexible linker. Each hairpin loop has a five-nucleotide complementary sequence theoretically capable of engaging in a KLI. On either side of each loop is two thymines which will not engage in kissing but are present to provide more flexibility and optimal KLI positioning. Our results suggest that the KLI occurs even at physiological salt levels, and that the KLI does not alter the thermodynamics and stability of the two stem structures. The KLI does not involve all five nucleotides, or at least each base-pair stack is not making full contact. Adding a second strand complementary to the bottom of the kissing complex removes flexibility and causes destabilization of the stems. The KLI of this less flexible complex is maintained but the TM is reduced, indicating an entopic penalty to its formation.


Assuntos
Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/química , Termodinâmica
10.
J Phys Chem B ; 122(28): 7057-7065, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29932334

RESUMO

Triplex formation occurs via interaction of a third strand with the major groove of double-stranded nucleic acid, through Hoogsteen hydrogen bonding. In this work, we use a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry to determine complete thermodynamic profiles for the unfolding of polyadenylic acid (poly(rA))·polyuridylic acid (poly(rU)) (duplex) and poly(rA)·2poly(rU) (triplex). Our thermodynamic results are in good agreement with the much earlier work of Krakauer and Sturtevant using only UV melting techniques. The folding of these two helices yielded an uptake of ions, Δ nNa+ = 0.15 mol Na+/mol base pair (duplex) and 0.30 mol Na+/mole base triplet (triplex), which are consistent with their polymer behavior and the higher charge density parameter of triple helices. The osmotic stress technique yielded a release of structural water, Δ nW = 2 mol H2O/mol base pair (duplex unfolding into single strands) and an uptake of structural water, Δ nW = 2 mol H2O/mole base pair (triplex unfolding into duplex and a single strand). However, an overall release of electrostricted waters is obtained for the unfolding of both complexes from pressure perturbation calorimetric experiments. In total, the Δ V values obtained for the unfolding of triplex into duplex and a single strand correspond to an immobilization of two structural waters and a release of three electrostricted waters. The Δ V values obtained for the unfolding of duplex into two single strands correspond to the release of two structural waters and the immobilization of four electrostricted water molecules.


Assuntos
RNA/química , Água/química , Pareamento de Bases , Sequência de Bases , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Íons/química , Desnaturação de Ácido Nucleico , Pressão Osmótica , Transição de Fase , RNA/metabolismo , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica , Raios Ultravioleta
11.
Biochimie ; 146: 156-165, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277568

RESUMO

Oligonucleotide-directed triple helix formation has been recognized as a potential tool for targeting genes with high specificity. Cystosine methylation in the 5' position is both ubiquitous and a stable regulatory modification, which could potentially stabilize triple helix formation. In this work, we have used a combination of calorimetric and spectroscopic techniques to study the intramolecular unfolding of four triplexes and two duplexes. We used the following triplex control sequence, named Control Tri, d(AGAGAC5TCTCTC5TCTCT), where C5 are loops of five cytosines. From this sequence, we studied three other sequences with dC → d(m5C) substitutions on the Hoogsteen strand (2MeH), Crick strand (2MeC) and both strands (4MeHC). Calorimetric studies determined that methylation does increase the thermal and enthalpic stability, leading to an overall favorable free energy, and that this increased stability is cumulative, i.e. methylation on both the Hoogsteen and Crick strands yields the largest favorable free energy. The differential uptake of protons, counterions and water was determined. It was found that methylation increases cytosine protonation by shifting the apparent pKa value to a higher pH; this increase in proton uptake coincides with a release of counterions during folding of the triplex, likely due to repulsion from the increased positive charge from the protonated cytosines. The immobilization of water was not affected for triplexes with methylated cytosines on their Hoogsteen or Crick strands, but was seen for the triplex where both strands are methylated. This may be due to the alignment in the major groove of the methyl groups on the cytosines with the methyl groups on the thymines which causes an increase in structural water along the spine of the triplex.


Assuntos
DNA/química , Sequência de Bases , DNA/genética , Metilação , Conformação de Ácido Nucleico , Prótons , Água/química
12.
J Inorg Biochem ; 177: 352-358, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844329

RESUMO

InrS (Internal nickel-responsive Sensor) is a transcriptional repressor of the nickel exporter NrsD and de-represses expression of the exporter upon binding Ni(II) ions. Although a crystal structure of apo-InrS has been reported, no structure of the protein with metal ions bound is available. Herein we report the results of metal site structural investigations of Ni(II) and Cu(II) complexes of InrS using X-ray absorption spectroscopy (XAS) that are complementary to data available from the apo-InrS crystal structure, and are consistent with a planar four-coordinate [Ni(His)2(Cys)2] structure, where the ligands are derived from the side chains of His21, Cys53, His78, and Cys82. Coordination of Cu(II) to InrS forms a nearly identical planar four-coordinate complex that is consistent with a simple replacement of the Ni(II) center by Cu(II).


Assuntos
Proteínas de Bactérias/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Ligantes , Estrutura Molecular , Níquel/química , Ligação Proteica , Proteínas Repressoras/química , Synechocystis , Espectroscopia por Absorção de Raios X
13.
J Phys Chem B ; 121(39): 9175-9184, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28875701

RESUMO

We report the thermodynamic contributions of loop length and loop sequence to the overall stability of DNA intramolecular pyrimidine triplexes. Two sets of triplexes were designed: in the first set, the C5 loop closing the triplex stem was replaced with 5'-CTnC loops (n = 1-5), whereas in the second set, both the duplex and triplex loops were replaced with a 5'-GCAA or 5'-AACG tetraloop. For the triplexes with a 5'-CTnC loop, the triplex with five bases in the loop has the highest stability relative to the control. A loop length lower than five compromises the strength of the base-pair stacks without decreasing the thermal stability, leading to a decreased enthalpy, whereas an increase in the loop length leads to a decreased enthalpy and a higher entropic penalty. The incorporation of the GCAA loop yielded more stable triplexes, whereas the incorporation of AACG in the triplex loop yielded a less stable triplex due to an unfavorable enthalpy term. Thus, addition of the GCAA tetraloop can cause an increase in the thermodynamics of the triplex without affecting the sequence or melting behavior and may result in an additional layer of genetic regulation.


Assuntos
DNA/química , Genes tat , Pirimidinas/química , Sequência de DNA Instável , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA