Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 174859, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053548

RESUMO

The world's top ten Organic Farming (OF) countries by converted area include several Mediterranean countries, including Spain. Despite this, little is known about the consequences of OF on crop production and environmental sustainability in this country. In this article, we conduct an agronomic analysis of Spanish considerable conversion rate to OF, which tends to concentrate in certain provinces and crops. Indeed, in the case of various crops and in several provinces, the organic share of total agricultural land exceeds 20-30 %. This concentration makes it possible to compare information obtained from farmers through interviews and provincial statistical information. The study data consisted of information collected from interviews of a representative sample of organic farmers conducted in 2004 and 2020 as well as official statistical information. The results showed that no yield gap between OF and conventional farming was found for vegetables and fruit trees, while it showed an increasing trend in arable crops. Presumably, the reason is that fruit trees and vegetables generate and incorporate high levels of carbon (C) flows into the soil and have a low land cost per unit of incorporated nitrogen (N) (or can be paid for), allowing to meet crop needs and to increase soil organic matter (SOM). Conversely, in the case of rainfed arable crops, the soil C and N inputs are deficient due to the low crop residues and the high land cost of N. Consequently, SOM destruction and N deficit progressively broaden the yield gap, undermining the agroecosystem sustainability. To reverse the situation, among other measures, it is necessary to implement agricultural policies designed to make rotations with high legume ratios viable and to plant varieties presenting higher production of residues and roots, such as traditional varieties.


Assuntos
Carbono , Produtos Agrícolas , Nitrogênio , Agricultura Orgânica , Espanha , Nitrogênio/análise , Carbono/análise , Agricultura Orgânica/métodos , Solo/química , Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Produção Agrícola/métodos
2.
Sci Total Environ ; 621: 634-648, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29202285

RESUMO

Soil organic carbon (SOC) management is key for soil fertility and for mitigation and adaptation to climate change, particularly in desertification-prone areas such as Mediterranean croplands. Industrialization and global change processes affect SOC dynamics in multiple, often opposing, ways. Here we present a detailed SOC balance in Spanish cropland from 1900 to 2008, as a model of a Mediterranean, industrialized agriculture. Net Primary Productivity (NPP) and soil C inputs were estimated based on yield and management data. Changes in SOC stocks were modeled using HSOC, a simple model with one inert and two active C pools, which combines RothC model parameters with humification coefficients. Crop yields increased by 227% during the studied period, but total C exported from the agroecosystem only increased by 73%, total NPP by 30%, and soil C inputs by 20%. There was a continued decline in SOC during the 20th century, and cropland SOC levels in 2008 were 17% below their 1933 peak. SOC trends were driven by historical changes in land uses, management practices and climate. Cropland expansion was the main driver of SOC loss until mid-20th century, followed by the decline in soil C inputs during the fast agricultural industrialization starting in the 1950s, which reduced harvest indices and weed biomass production, particularly in woody cropping systems. C inputs started recovering in the 1980s, mainly through increasing crop residue return. The upward trend in SOC mineralization rates was an increasingly important driver of SOC losses, triggered by irrigation expansion, soil cover loss and climate change-driven temperature rise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA