Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137901

RESUMO

Thermal dissipation probe (TDP) method (Granier, 1985) is widely used to estimate tree transpiration (i.e., the water evaporated from the leaves) because it is simple to build, easy to install, and relatively inexpensive. However, the universality of the original calibration has been questioned and, in many cases, proved to be inaccurate. Thus, when the TDP is used in a new species, specific tests should be carried out. Our aim was to propose a new method for improving the accuracy of TDP on trees in the field. Small hazelnut trees (diameter at breast height 5 cm) were used for the experiment. The response of TDP sensors was compared with a reference water uptake measured with an electronic potometer system provided with a high precision liquid flow meter. We equipped three stems where we measured the sap flow density, the sapwood area (by using fuchsine), the total tree water uptake (reference), and the main meteorological parameters during summer 2018. Results confirmed that the original Granier's calibration underestimated the effective tree transpiration (relative error about -60%). We proposed a new equation for improving the measurement accuracy within an error of about 4%. The system proposed appeared an easier solution compared to potted trees and particularly suitable for orchards, thus contributing to improve the irrigation management worldwide.

2.
New Phytol ; 219(4): 1283-1299, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862531

RESUMO

Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (Fd ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration. Their contribution has been assessed using a stem segment calibration experiment and 4 yr of TDM measurements in Picea abies and Larix decidua growing in contrasting environments. Uncertainties were then projected on TDM data from different conifers across the northern hemisphere. Commonly applied methods mostly underestimated absolute Fd . Lacking a site- and species-specific calibrations reduced our stand water-use measurements by 37% and induced uncertainty in northern hemisphere Fd . Additionally, although the interdaily variability was maintained, disregarding dampening and/or applying zero-flow conditions that ignored night-time water use reduced the correlation between environment and Fd . The presented ensemble of calibration curves and proposed dampening correction, together with the systematic quantification of data-processing uncertainties, provide crucial steps in improving whole-tree water-use estimates across spatial and temporal scales.


Assuntos
Reologia , Temperatura , Traqueófitas/fisiologia , Incerteza , Calibragem , Modelos Lineares , Especificidade da Espécie , Fatores de Tempo , Árvores/fisiologia , Água
3.
Nat Commun ; 13(1): 28, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013178

RESUMO

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Assuntos
Mudança Climática , Desidratação , Ecologia , Florestas , Raios Infravermelhos , Clima , Secas , Ecossistema , Noruega , Picea , Pinus sylvestris , Solo , Árvores , Água
4.
New Phytol ; 189(1): 241-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20840508

RESUMO

• Low temperatures limit the fixation of photosynthates and xylogenesis. Here, we hypothesized that reduced longitudinal growth in trees at high altitude is related to the lower hydraulic efficiency of the transport system. • Apical buds of Norway spruce (Picea abies) trees at high and low elevation were heated during 2006 and 2007. At the end of the experiment, trees were felled. Longitudinal increments and tracheid lumen areas were measured along the stem. Apical hydraulic conductivity (k) was estimated from anatomical data. • Before heating, high-altitude trees showed fewer (P = 0.002) and smaller (P = 0.008) apical conduits, and therefore reduced k (P = 0.016) and stem elongation (P < 0.0001), in comparison with trees at low elevation. After 2 yr of heating, k increased at both high (P = 0.014) and low (P = 0.047) elevation. Only high-altitude trees showed increased stem elongation, which reached the same magnitude as that of controls at low elevation (P = 0.735). Heating around the apical shoots did not appear to induce significant changes in conduit dimension along the rest of the stem. • The total number and size of xylem elements at the stem apex are strongly constrained by low temperatures. Trees at high altitude are therefore prevented from building up an efficient transport system, and their reduced longitudinal growth reflects strong hydraulic limitations.


Assuntos
Altitude , Picea/crescimento & desenvolvimento , Temperatura , Picea/anatomia & histologia , Picea/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Água/metabolismo , Xilema/anatomia & histologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
5.
Front Plant Sci ; 12: 767916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956266

RESUMO

A remarkable increase in vapor pressure deficit (VPD) has been recorded in the last decades in relation to global warming. Higher VPD generally leads to stomatal closure and limitations to leaf carbon uptake. Assessing tree conductance responses to VPD is a key step for modeling plant performances and productivity under future environmental conditions, especially when trees are cultivated well outside their native range as for hazelnut (Corylus spp.). Our main aim is to assess the stand-level surface canopy conductance (G surf ) responses to VPD in hazelnut across different continents to provide a proxy for potential productivity. Tree sap flow (Fd) was measured by Thermal dissipation probes (TDP) probes (six per sites) in eight hazelnut orchards in France, Italy, Georgia, Australia, and Chile during three growing seasons since 2016, together with the main meteorological parameters. We extracted diurnal Fd to estimate the canopy conductance G surf. . In all the sites, the maximum G surf occurred at low values of VPD (on average 0.57 kPa) showing that hazelnut promptly avoids leaf dehydration and that maximum leaf gas exchange is limited at relatively low VPD (i.e., often less than 1 kPa). The sensitivity of the conductance vs. VPD (i.e., -dG/dlnVPD) resulted much lower (average m = -0.36) compared to other tree species, with little differences among sites. We identified a range of suboptimal VPD conditions for G surf maximization (G surf > 80% compared to maximum) in each site, named "VPD80," which multiplied by the mean G surf might be used as a proxy for assessing the maximum gas exchange of the orchard with a specific management and site. Potential gas exchange appeared relatively constant in most of the sites except in France (much higher) and in the driest Australian site (much lower). This study assessed the sensitivity of hazelnut to VPD and proposed a simple proxy for predicting the potential gas exchange in different areas. Our results can be used for defining suitability maps based on average VPD conditions, thus facilitating correct identification of the potentially most productive sites.

6.
Tree Physiol ; 41(11): 2022-2033, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33987674

RESUMO

Climate change and the global economy impose new challenges in the management of food-producing trees and require studying how to model plant physiological responses, namely growth dynamics and phenology. Hazelnut (Corylus avellana L.) is a multi-stemmed forest species domesticated for nut production and now widely spread across different continents. However, information on stem growth and its synchronization with leaf and reproductive phenology is extremely limited. This study aimed at (i) defining the sequencing of radial growth phases in hazelnut (onset, maximum growth and cessation) and the specific temperature triggering stem growth; and (ii) combining the stem growth phases with leaf and fruit phenology. Point dendrometers were installed on 20 hazelnut trees across eight orchards distributed in the Northern and Southern hemisphere during a period of three growing seasons between 2015 and 2018. The radial growth variations and climatic parameters were averaged and recorded every 15 min. Leaf and reproductive phenology were collected weekly at each site. Results showed that stem radial growth started from day of year 84 to 134 in relation to site and year but within a relatively narrow range of temperature (from 13 to 16.5 °C). However, we observed a temperature-related acclimation in the cultivar Tonda di Giffoni. Maximum growth always occurred well before the summer solstice (on average 35 days) and before the maximum annual air temperatures. Xylogenesis developed rapidly since the time interval between onset and maximum growth rate was about 3 weeks. Importantly, the species showed an evident delay of stem growth onset with respect to leaf emergence (on average 4-6 weeks) rarely observed in tree species. These findings represent the first global analysis of radial growth dynamics in hazelnut, which is an essential step for developing models on orchard functioning and management on different continents.


Assuntos
Corylus , Florestas , Folhas de Planta/fisiologia , Estações do Ano , Temperatura , Árvores
7.
Tree Physiol ; 27(8): 1125-36, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17472939

RESUMO

Variation in tree stem diameter results from reversible shrinking and swelling and irreversible radial growth, all processes that are influenced by tree water status. To assess the causal effects of water and temperature on stem radial variation (DeltaR) and maximum daily shrinkage (MDS), the diurnal cycle was divided into three phases: contraction, expansion and stem radius increment. Diurnal cycles were measured during 1996-2004 in Picea abies (L.) Karst., Pinus cembra L. and Larix decidua Mill. in a timberline ecotone to understand the links between stem diameter variation (v; defined as MDS or DR), phase duration (h), and weather or sap flow descriptors (d). We demonstrated that a high proportion of MDS and DeltaR was explained by h because of the nonlinearity of the physiological responses to weather d. By causal modeling, we tested whether the relationship between d and v was due to h (lack of causal relationship between d and v) or to both d and h (double cause). The results of this modeling added new physiological insight into daily growth-climate relationships. Negative correlations were found between DeltaR and air temperature owing to the negative effect of temperature on h only, and did not correspond to a direct effect on tree growth mediated by an alteration in metabolic activities. Precipitation had two main effects: a direct effect on DeltaR and an indirect effect mediated through an effect on h. A reduction in sap flow at night led to an increase in DeltaR for P. abies and L. decidua, but not for P. cembra.


Assuntos
Ritmo Circadiano/fisiologia , Modelos Biológicos , Temperatura , Árvores/fisiologia , Água/fisiologia , Clima , Itália , Pinaceae/crescimento & desenvolvimento , Pinaceae/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Árvores/crescimento & desenvolvimento
8.
Oecologia ; 152(1): 1-12, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17165095

RESUMO

Temperature is the most important factor affecting growth at high altitudes. As trees use much of the allocated carbon gained from photosynthesis to produce branches and stems, information on the timing and dynamics of secondary wood growth is crucial to assessing temperature thresholds for xylogenesis. We have carried out histological analyses to determine cambial activity and xylem cell differentiation in conifers growing at the treeline on the eastern Alps in two sites during 2002-2004 with the aim of linking the growth process with temperature and, consequently, of defining thresholds for xylogenesis. Cambial activity occurred from May to July-August and cell differentiation from May-June to September-October. The earliest start of radial enlargement was observed in stone pine in mid-May, while Norway spruce was the last species to begin tracheid differentiation. The duration of wood formation varied from 90 to 137 days, depending on year and site, with no difference between species. Longer durations were observed in trees on the south-facing site because of the earlier onset and later ending of cell production and differentiation. The threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regressions. Xylogenesis was active when the mean daily air temperature was 5.6-8.5 degrees C and mean stem temperature was 7.2-9 degrees C. The similar thresholds among all trees suggested the existence of thermal limits in wood formation that correspond with temperatures of 6-8 degrees C that are supposed to limit growth at the treeline. Different soil temperature thresholds between sites indicated that soil temperature may not be the main factor limiting xylogenesis. This study represents the first attempt to define a threshold through comparative assessment of xylem growth and tissue temperatures in stem meristems at high altitudes.


Assuntos
Altitude , Temperatura , Traqueófitas/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Diferenciação Celular , Periodicidade , Estações do Ano , Madeira/crescimento & desenvolvimento , Xilema/citologia
9.
New Phytol ; 169(2): 279-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16411931

RESUMO

A recent theoretical model (the West, Brown and Enquist, WBE model) hypothesized that plants have evolved a network of xylem conduits with a tapered structure (narrower conduits distally) which should minimize the cost of water transport from roots to leaves. Specific measurements are required to test the model predictions. We sampled both angiosperms and gymnosperms (50 trees) growing in different environments with heights ranging from 0.5 to 44.4 m, measuring variations of the xylem-conduit diameter from tree top to stem base. In all trees measured, mean hydraulically weighted conduit diameters (Dh) at the tree top were narrower than those at the stem base. In actively growing trees, the longitudinal variation of Dh showed a degree of tapering in agreement with WBE predictions, while trees close to their maximum height showed slightly lower conduit tapering. Comparing different species, a very good correlation was observed between degree of xylem tapering and tree height (r2 = 0.88; P < 0.0001) independently of any other variable (age, site, altitude, etc.). As predicted by WBE, sampled trees seemed to converge towards similar xylem conduit tapering. However, trees approaching their maximum height had a nonoptimal tapering which appeared insufficient to compensate for the progressive increase in tree height.


Assuntos
Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Árvores/anatomia & histologia , Árvores/metabolismo , Água/metabolismo , Evolução Biológica , Transporte Biológico , Modelos Biológicos , Especificidade da Espécie , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA