RESUMO
Baking is a healthier alternative to frying, since texture, color, smell, and flavor are developed, without adding oil. The objective was to estimate the moisture content in potato slices, during baking using Fick's law of diffusion to model internal moisture transport and to assess the impact on quality attributes. Moisture transport kinetics were examined at three baking temperatures of 120, 130, and 140°C. Fick's law was employed to estimate average moisture content using different methods: considering both a constant (method of slopes by subperiods, MSS; and method of successive approximations, MSA) and a variable (represented as a quadratic function of time, QFT) behavior of effective diffusivity (De). Three quality variables were analyzed: water activity (aw, dew point hygrometry), total color difference (∆E, colorimetry), and fracturability (F, universal testing machine). The diffusivity estimated with the time-varying De method provided a more realistic description of moisture migration during baking. The aw, ∆E, and F for baked potato slices ranged from 0.234 to 0.276, 17.9 to 24.6, and 5.20 to 5.49 N, respectively. These attributes imply improved stability and extended shelf life, showing typical colors and texture changes for baked snacks. These changes are linked to variations in diffusivity, influenced by the size and quantity of micropores within the food structure. This study could allow an accurate prediction of mass transfer by considering variable De, facilitating the optimization of baking conditions. PRACTICAL APPLICATION: The analysis of the moisture content using Fick's law, considering a time-varying diffusivity, enables the optimization of the baking process for foods. This helps minimize the occurrence of defective products.
Assuntos
Culinária , Solanum tuberosum , Água , Solanum tuberosum/química , Água/análise , Culinária/métodos , Difusão , Cinética , Temperatura Alta , CorRESUMO
The heat and momentum transfer of tomato puree through a concentric-tube heat exchanger over a range of generalized Reynolds number (0.05 < Re < 66.5) was experimentally and numerically analyzed. Thermophysical and rheological properties of tomato puree (12°Brix) were measured from 20 to 60°C. The velocity, pressure, and temperature were calculated using the computational fluid dynamics (CFD) software FLUENTTM with temperature-dependent transport properties. The thermal operation of the concentric-tube exchanger was satisfactorily predicted using CFD, indicating accurate measurement of tomato puree properties with temperature variations. A concordance was found between the calculated Fanning friction factor and generalized Reynolds with the experimental correlation. A modified Sieder-Tate correlation was established, which allows properly expressing the Nusselt number as a function of the Peclet number. Simple correlations for the mechanical work and the heat transfer rate as a function of the volumetric flow rate were derived. The thermal efficiency was high at low puree flow rates but decreased with higher rates. However, at high flow rates, ceased its decline, instead showing a slight improvement. The analysis confirmed higher heat transfer rates in the concentric-tube heat exchanger compared to a plain tube at low puree flow rates. The results offer valuable insights for assessing diverse operational conditions in dairy, beverage, sauce, and concentrated food industries. Additionally, they also enhance the analysis and design of concentric-tube heat exchangers. PRACTICAL APPLICATION: The knowledge of the rheological and hydrodynamical behavior of fluids in concentric-tube heat exchangers allows to explore a set of different operating conditions to improve the yield and effectiveness on the system heating/cooling design.
RESUMO
The objective of this work was to model the mass transfer in corn tortilla baking using different approaches for effective diffusivity based on the Fick's law of diffusion and to evaluate the impact of the process on quality parameters. The 1st one assumes constant effective diffusivity (method of slopes by subperiods and method of successive approximations) and the 2nd one considers variable effective diffusivity (quadratic function of time and Weibull distribution). In addition, the Weibull distribution was applied to fracturability. The effective moisture diffusivity inside the tortilla during baking is not constant and the estimations generated when considering variable diffusivity with quadratic time and Weibull distribution showed better fits (both, R2 = 0.999) to the average moisture content. Quality parameter fracturability was affected by the baking process and the Weibull model adequately described (R2 = 0.996) the fracturability behavior. This work will allow an adequate estimation of the concentration profiles and histories for mass transfer operations in products that can be represented as an infinite plate. The obtained analytical solutions with variable diffusivity will help to estimate the optimal conditions of the baking process to achieve the required final moisture content for baked corn tortilla shells. PRACTICAL APPLICATION: The analytical solutions of the Fick's law of diffusion for the moisture content in products that can be represented as an infinite plate, considering variable diffusivity, can be useful in studies when accurate estimations of effective diffusivity and concentration are needed.
Assuntos
Pão/análise , Temperatura Alta , Água/análise , Zea mays , DifusãoRESUMO
The objective of this work was to simulate heat transfer during blanching (90 °C) and hydrocooling (5 °C) of broccoli florets (Brassica oleracea L. Italica) and to evaluate the impact of these processes on the physicochemical and nutrimental quality properties. Thermophysical properties (thermal conductivity [line heat source], specific heat capacity [differential scanning calorimetry], and bulk density [volume displacement]) of stem and inflorescence were measured as a function of temperature (5, 10, 20, 40, 60, and 80 °C). The activation energy and the frequency factor (Arrhenius model) of these thermophysical properties were calculated. A 3-dimensional finite element model was developed to predict the temperature history at different points inside the product. Comparison of the theoretical and experimental temperature histories was carried out. Quality parameters (firmness, total color difference, and vitamin C content) and peroxidase activity were measured. The satisfactory validation of the finite element model allows the prediction of temperature histories and profiles under different process conditions, which could lead to an eventual optimization aimed to minimize the nutritional and sensorial losses in broccoli florets.