Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Environ Manage ; 324: 116247, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174471

RESUMO

Nowadays, wastewater treatment plants (WWTPs) are transforming into water resource recovery facilities (WRRFs) where the resource recovery from waste streams is pivotal. Aerobic granular sludge (AGS) is a novel technology applied for wastewater treatment. Extracellular polymeric substances (EPS) secreted by microorganisms promote the aggregation of bacterial cells into AGS and the structural fraction of EPS (sEPS) is responsible for the mechanical properties of AGS. sEPS can be extracted and recovered from waste AGS by physico-chemical methods and its characterization is to date of relevant concern to understand the properties in the perspective of potential applications. This study reports on: characterization of sEPS extracted and recovered from AGS; - formation and characterization of sEPS-based hydrogels. Briefly, sEPS were extracted by a thermo-alkaline process followed by an acidic precipitation. sEPS-based hydrogels were formed by a cross-linking process with a 2.5% w/w CaCl2 solution. The following key-findings can be drawn: i) hydrogels can be formed starting from 1% w/w sEPS on, by diffusion of Ca2+ into sEPS network; ii) the Ca/C molar ratio of hydrogels decreased with increasing concentration of sEPS from 1 to 10% w/w; iii) the thermogravimetric and spectroscopic behaviours of sEPS show that the cross-linking reaction mainly involves the polysaccharidic fraction of biopolymers; iv) water-holding capacity up to 99 gH2O/gsEPS was registered for 1% w/w sEPS-based hydrogels, suggesting applications in several industrial sectors (i.e. chemical, paper, textile, agronomic, etc.); v) rheological results highlighted a solid-like behaviour (G'≫G") of sEPS-based hydrogels. The power-law fitting of G' vs. sEPS concentration suggests that the expansion of the sEPS network during cross-linking occurs through a percolative mechanism involving the initial formation of sEPS oligomers clusters followed by their interconnection towards the formation of 3D network. These findings provide additional information about the mechanisms of sEPS-based hydrogel formation and reveal the peculiar physico-chemical characteristics of sEPS which nowadays are increasingly gaining interest in the context of resource recovery.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Eliminação de Resíduos Líquidos/métodos , Hidrogéis , Biopolímeros/química , Reatores Biológicos , Águas Residuárias , Aerobiose
2.
Waste Manag Res ; 40(8): 1311-1321, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34865591

RESUMO

The present research investigates the degradation rate of bioplastics under various composting conditions, including suboptimal ones. Lab-scale tests were carried out setting three variables: temperature (37°C-58°C), humidity (30%-60%) and duration of the thermophilic and the maturation phases (15-60 days). The composting tests were carried out following modified guideline ISO 20200:2015 and lasted for 60 days. Bioplastics in the synthetic waste matrix consisted of Mater-Bi® film biobags and PLA rigid teaspoons. A kinetic study was performed, resulting in faster degradation rates for film bioplastics (first-order kinetics with k = 0.0850-0.1663 d-1) than for rigid (0.0018-0.0136 d-1). Moreover, film bioplastics reached a complete degradation within the 60 days of the test. Concerning the rigid products, 90% degradation would be achieved in 2-3 years for mesophilic conditions. Finally, in the undersieve of 0.5 mm some microplastics were identified with the ImageJ software, mainly relatable to rigid (PLA) bioplastics. Overall, the results disclosed that the combination of mesophilic temperatures and absence of moistening slowed down both the degradation and the disintegration process of bioplastics.


Assuntos
Compostagem , Biodegradação Ambiental , Cinética , Plásticos , Poliésteres , Solo
3.
Waste Manag Res ; 39(7): 956-965, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33250042

RESUMO

The present study develops a multi-step methodology for identification and quantification of microplastics and micro-bioplastics (together called in the current work micro-(bio)plastics) in sludge. In previous studies, different methods for the extraction of microplastics were devised for traditional plastics, while the current research tested the methodology on starch-based micro-bioplastics of 0.1-2 mm size. Compostable bioplastics are expected to enter the anaerobic or aerobic biological treatments that lead to end-products applicable in agriculture; some critical conditions of treatments (e.g. low temperature and moisture) can slow down the degradation process and be responsible for the presence of microplastics in the end-product. The methodology consists of an initial oxidation step, with hydrogen peroxide 35% concentrated to clear the sludge and remove the organic fraction, followed by a combination of flotation with sodium chloride and observation of the residues under a fluorescence microscope using a green filter. The workflow revealed an efficacy of removal from 94% to 100% and from 92% to 96% for plastic fragments, 0.5-2 mm and 0.1-0.5 mm size, respectively. The methodology was then applied to samples of food waste pulp harvested after a shredding pre-treatment in an anaerobic digestion (AD) plant in Italy, where polyethylene, starch-based Mater-Bi® and cellophane microplastics were recovered in amounts of 9 ± 1.3/10 g <2 mm and 4.8 ± 1.2/10 g ⩾2 mm. The study highlights the need to lower the threshold size for the quantification of plastics in organic fertilizers, which is currently set by legislations at 2 mm, by improving the background knowledge about the fate of the micro-(bio)plastics in biological treatments for the organic waste.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Alimentos , Itália , Plásticos , Esgotos , Eliminação de Resíduos Líquidos
4.
Indoor Air ; 30(5): 900-913, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32090381

RESUMO

Indoor Air Quality monitoring in cultural institutions is of particular concern to protect these places and the cultural heritage content. An indoor monitoring campaign was performed in three museums in Florence (Italy) to determine the occurrence and levels of volatile organic compounds (VOCs). VOCs of interest included BTEX (benzene, toluene, ethylbenzene, xylenes), terpenes, aldehydes, organic acids, and cyclic volatile methyl siloxanes (cVMS). The most abundant VOCs in all samples analyzed were BTEX, which were strictly related to the traffic source, followed by siloxanes and terpenes. Among BTEX, toluene was always the most abundant followed by xylenes, ethylbenzene, and benzene. cVMS in exhibition rooms with the presence of visitors showed higher values compared to samples collected when the museums were closed. Terpenes showed not only the influence of vegetation-biogenic sources surrounding a museum but could also be related to the wood used for the construction of showcases and furniture and the use of cleaning products. Data obtained also showed the presence of organic acids and aldehydes whose source can be traced back to exhibits themselves and wood-based furniture. Assessing the levels of organic acids in museums is important because, over time, it can cause deterioration of the artifacts.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Museus/estatística & dados numéricos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Aldeídos/análise , Benzeno/análise , Itália , Terpenos , Tolueno/análise , Xilenos/análise
5.
J Environ Manage ; 236: 649-656, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772722

RESUMO

The composition and colloidal properties of extracellular polymeric substances (EPS) from anammox granular sludge were investigated through a complete set of spectroscopic and scattering techniques. To fully characterize EPS, we developed a robust and reproducible extraction/recovery protocol specific for anammox biofilms, based on the change of water affinity under alternated alkaline and acidic conditions, each monitored with Z-potential and dynamic light scattering analysis. This method enabled both extraction as a colloidal suspension and recovery as a solid of large amounts of EPS (0.38 ±â€¯0.04 and 0.21 ±â€¯0.02 g/g, respectively), including for the first time its structural components. The dominance of the proteinaceous fraction was revealed by all methods tested, resulting in the highest protein/carbohydrates ratio reported for biofilms applied in the wastewater sector. The abundance of proteinaceous ordered structures and in particular of cross-ß motifs was detected, indicating for the first time the presence of amyloid-like aggregates in anammox EPS, and suggesting the key role of the protein fraction in determining the mechanical properties of the parent biofilm. The robustness and reproducibility of the proposed method fill the current gap towards a reliable full-scale recovery as well as towards an accurate and meaningful investigation of anammox EPS and pave the way for further exploration of their applicative potential thus stimulating the desirable shift from the current wastewater treatment perspective towards biorefinery in a circular economy context.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Biofilmes , Reprodutibilidade dos Testes , Águas Residuárias
6.
Phys Chem Chem Phys ; 18(13): 8865-73, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26955983

RESUMO

The structure and rheology behaviour of gels produced by water dispersions of a vitamin C-derived surfactant (ascorbyl-6-O-dodecanoate) were investigated by means of SAXS and rheology experiments for the first time. The gel state is formed upon heating and is due to an anisotropic expansion of the tightly compact lamellar structure. The phase transition involves primarily the melting of the alkyl chains and a significant increment in the interlamellar water layer. In particular, our results show that in the gel the hydrophobic chains are in a liquid-like state, as in the core of a micelle, while the head groups release their acidic proton, become negatively charged and determine the onset of strong electrostatic interactions between facing lamellae. The full hydration of the anionic head groups and the uptake of a significant amount of water increase the interlamellar thickness and stabilise the gel structure. Rheology and SAXS measurements together provide an updated picture for the gel state. Moreover, for the first time we show the presence of a concentration threshold, above which the self-assembled aggregates interact more strongly and deplete some of the water that is retained in the interlamellar region.

7.
Molecules ; 20(8): 14386-401, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26262603

RESUMO

The combination of two different metals, each of them acting on different steps of the oxygen reduction reaction (ORR), yields synergic catalytic effects. In this respect, the electrocatalytic effect of silver is enhanced by the addition of cobalt, which is able to break the O-O bond of molecular oxygen, thus accelerating the first step of the reduction mechanism. At the same time, research is to further reduce the catalyst's cost, reducing the amount of Ag, which, even though being much less expensive than Pt, is still a noble metal. From this point of view, using a small amount of Ag together with an inexpensive material, such as graphite, represents a good compromise. The aim of this work was to verify if the synergic effects are still operating when very small amounts of cobalt (2-10 µg·cm(-2)) are added to the microparticles of silver electrodeposited on glassy carbon, described in a preceding paper from us. To better stress the different behaviour observed when cobalt and silver are contemporarily present in the deposit, the catalytic properties of cobalt alone were investigated. The analysis was completed by the Levich plots to evaluate the number of electrons involved and by Tafel plots to show the effects on the reaction mechanism.


Assuntos
Carbono/química , Cobalto/química , Técnicas Eletroquímicas/métodos , Galvanoplastia/métodos , Vidro/química , Oxigênio/química , Prata/química , Catálise , Eletrodos , Cinética , Oxirredução
8.
Langmuir ; 30(2): 660-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24405268

RESUMO

The loss of mechanical properties affecting archeological or paleontological bones is often caused by demineralization processes that are similar to those driving the mechanisms leading to osteoporosis. One simple way to harden and to strengthen demineralized bone remains could be the in situ growth of CaCO3 crystals in the aragonite polymorph - metastable at atmospheric pressure -which is known to have very strong mechanical strength in comparison with the stable calcite. In the present study the controlled growth of aragonite crystals was achieved by reaction between atmospheric CO2 and calcium hydroxide nanoparticles in the presence of collagen within the deteriorated bones. In a few days the carbonation of Ca(OH)2 particles led to a mixture of calcite and aragonite, increasing the strength of the mineral network of the bone. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) and Fourier transform infrared (FT-IR) spectrometry showed that aragonite crystallization was achieved. The effect of the aragonite crystal formation on the mechanical properties of the deteriorated bones was investigated by means of X-rays microtomography, helium porosimetry, atomic force microscopy (AFM), and Vickers microhardness techniques. All these data enabled to conclude that the strength of the bones increased of a factor of 50-70% with respect to the untreated bone. These results could have immediate impact for preserving archeological and paleontological bone remains.


Assuntos
Osso e Ossos/química , Carbonato de Cálcio/química , Hidróxido de Cálcio/química , Dióxido de Carbono/química , Nanoestruturas/química , Arqueologia , Colágeno/química , Cristalização , Humanos , Pessoa de Meia-Idade , Paleontologia
9.
Langmuir ; 29(31): 9881-90, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23889558

RESUMO

The interactions between an acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly(EMA/MA), and Ca(OH)2 nanoparticles were investigated in order to establish the reciprocal influence of these two compounds on their peculiar properties. The carbonation kinetics of Ca(OH)2 nanoparticles by atmospheric CO2 was investigated by FTIR and SEM measurements and compared to that of a nanocomposite film. CaCO3 formation occurred even in the presence of the copolymer, but only after an induction period of ca. 200 h and with a lower reaction rate. Some implications in cultural heritage conservation dealing with application of nanolime on artifacts previously treated with acrylic copolymers were discussed. Contact angle measurements, mechanical cohesion properties, and water vapor permeability allowed us to conclude that the optimum behavior of nanolime with respect to transpiration was not compromised by the presence of the copolymer, and the behavior in terms of mechanical properties recovery by the application of Ca(OH)2 nanoparticles remained excellent even in the presence of poly(EMA/MA).


Assuntos
Acrilatos/química , Hidróxido de Cálcio/química , Nanoestruturas/química , Polímeros/química , Tamanho da Partícula , Propriedades de Superfície
10.
ACS Appl Mater Interfaces ; 15(39): 46428-46439, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515546

RESUMO

Macroporous gels find application in several scientific fields, ranging from art restoration to wastewater filtration or cell entrapment. In this work, two-component sponge-like cryogels are challenged to assess their cleaning performances and to investigate how pores size and connectivity affect physico-chemical properties. The gels were obtained through a freeze-thaw process, exploiting a spontaneous polymer-polymer phase-separation occurring in the pre-gel solution. During the freezing step, a highly hydrolyzed polyvinyl alcohol (H-PVA) forms the hydrogel walls. The secondary components, namely a partially hydrolyzed polyvinyl alcohol (L-PVA) or polyvinyl pyrrolidone (PVP), act as modular porogens, being partially extracted during gel washing. H-PVA/L-PVA and H-PVA/PVP mixtures were studied by confocal laser scanning microscopy to unveil sols and gels morphology at the micron-scale, while small angle X-ray scattering was used to get insights about characteristic dimensions at the nanoscale. The gelation mechanism was investigated through rheology measurements, and the characteristic exponents were compared to De Gennes' scaling laws gathered from percolation. In the field of art conservation, these sponge-like gels are ideal systems for the cleaning of artistic painted surfaces. Their interconnected pores allow the diffusion of cleaning fluids at the painted interface, facilitating dirt uptake and/or detachment. This study uncovered a direct relationship linking a gel's cleaning performance to its apparent tortuosity. These findings can pave the way to fine-tuning systems with enhanced cleaning abilities, not restricted to the restoration of irreplaceable priceless works of art, but with possible application in diverse research fields.

11.
Colloids Surf B Biointerfaces ; 225: 113287, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004387

RESUMO

The main goal of this work is to open new perspectives in the field of electrodeposition and provide green alternatives to the electroplating industry. The effect of different anions (SO42-, ClO3-, NO3-, ClO4-, BF4-, PF6-) in solution on the electrodeposition of copper was investigated. The solutions, containing only the copper precursor and the background electrolyte, were tailored to minimize the environmental impact and reduce the use of organic additives and surfactants. The study is based on electrochemical measurements carried out to verify that no metal complexation takes place. We assessed the nucleation and growth mechanism, we performed a morphological characterization through scanning electron microscopy and deposition efficiency by measuring the film thickness through X-ray fluorescence spectroscopy. Significant differences in the growth mechanism and in the morphology of the electrodeposited films, were observed as a function of the background electrolyte.


Assuntos
Cobre , Galvanoplastia , Cobre/química , Galvanoplastia/métodos , Microscopia Eletrônica de Varredura , Ânions , Eletrólitos/química
12.
Gels ; 9(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38131971

RESUMO

Polydimethylsiloxane (PDMS) organogel sponges were prepared and studied in order to understand the role of pore size in an elastomeric network on the ability to uptake and release organic solvents. PDMS organogel sponges have been produced according to sugar leaching techniques by adding two sugar templates of different forms and grain sizes (a sugar cube template and a powdered sugar template), in order to obtain materials differing in porosity, pore size distribution, and solvent absorption and liquid retention capability. These materials were compared to PDMS organogel slabs that do not contain pores. The sponges were characterized by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and compared with PDMS slabs that do not contain pores. Scanning electron microscopy (SEM) provided information about their morphology. X-ray micro-tomography (XMT) allowed us to ascertain how the form of the sugar templating agent influences the porosity of the systems: when templated with sugar cubes, the porosity was 77% and the mean size of the pores was ca. 300 µm; when templated with powdered sugar, the porosity decreased to ca. 10% and the mean pore size was reduced to ca. 75 µm. These materials, porous organic polymers (POPs), can absorb many solvents in different proportions as a function of their polarity. Absorption capacity, as measured by swelling with eight solvents covering a wide range of polarities, was investigated. Rheology data established that solvent absorption did not have an appreciable impact on the gel-like properties of the sponges, suggesting their potential for applications in cultural heritage conservation. Application tests were conducted on the surfaces of two different lab mock-ups that simulate real painted works of art. They demonstrated further that PDMS sponges are a potential innovative support for controlled and selective cleaning of works of art surfaces.

13.
Colloids Surf B Biointerfaces ; 213: 112388, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35183999

RESUMO

The application of a formulation on the skin represents an effective way to deliver bio-active molecules for therapeutical purposes. Moreover, the outermost skin layer, the stratum corneum, can be overcome by employing chemical permeation enhancers and edge activators as components. Several lipids can be considered as permeation enhancers, such as the ubiquitous monoolein, one of the most used building blocks for the preparation of lipid liquid crystalline nanoparticles which are applied as drug carriers for nanomedicine applications. Recent papers highlighted how bile salts can affect the phase behavior of monoolein to obtain drug carriers suitable for topical administration, given their role as edge activators into the formulation. Herein, the encapsulation of natural antioxidants (caffeic acid and ferulic acid) into lipid vesicular gels (LVGs) made by monoolein and sodium taurocholate (TC) in water was studied to produce formulations suitable for topical application. TC induces a bicontinuous cubic to multilamellar phase transition for monoolein in water at the given concentrations, and by increasing its content into the formulations, unilamellar LVGs are formed. The encapsulation of the two antioxidants did not affect significantly the structure of the gels. The oscillating rheological studies showed that ferulic acid has a structuring effect on the lipid matrix, in comparison with the empty dispersion and the one containing caffeic acid. These gels were then tested in vitro on new-born pig skin to evaluate their efficacy as drug carriers for topical administration, showing that caffeic acid is mostly retained in the gel whereas ferulic acid is released at a higher degree. The data herein reported provide some further information on the effect of bile salts on the lipid self-assembly to evaluate useful compositions for topical administration of natural antioxidants.


Assuntos
Antioxidantes , Absorção Cutânea , Administração Cutânea , Administração Tópica , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Portadores de Fármacos/química , Géis/farmacologia , Pele , Suínos , Água/metabolismo
14.
J Hazard Mater ; 424(Pt C): 126661, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34315635

RESUMO

The recovery and conversion of Extracellular Polymeric Substances (EPS) from sewage sludge into bio-based commodities might improve the economics and environmental sustainability of wastewater treatment. This contribution explores the application of EPS from anammox granular waste sludge as biosorbent for the removal of heavy metals, specifically lead, copper, nickel, and zinc. Adsorption capacities equivalent or higher than well-established adsorbent media emerged from single-metal biosorption studies (up to 84.9, 52.8, 21.7 and 7.4 mg/gTSEPS for Pb2+, Cu2+, Ni2+ and Zn2+, respectively). Combining spectroscopic techniques, a mechanistic hypothesis for metal biosorption, based on a combination of electrostatic interaction, ion exchange, complexation, and precipitation, was proposed. The adsorption mechanisms of extracted EPS and non-extracted EPS in the native biomass were indirectly compared by means of single-metal biosorption studies performed with pristine granules (adsorbing up to 103.7, 36.1, 48.2 and 49.8 mg/gTSgranules of Pb2+, Cu2+, Ni2+, and Zn2+, respectively). In comparison with pristine anammox granules, EPS showed lower adsorption capacities except for copper and different adsorption pathways as postulated based on the adsorption data interpretation via theoretical models. The multi-metal biosorption tests excluded significant competitions among different heavy metals for the EPS binding sites, thus opening further scenarios for the treatment of complex wastewaters.

15.
Sci Rep ; 12(1): 6975, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484192

RESUMO

An innovative protocol for the consolidation of ancient bone remains based on the use of nanometric HydroxyAPatite (HAP) was set up and tested through a multidisciplinary approach. A new protocol for the synthesis of HAP nanoparticles was developed, and the composition of the obtained nanomaterial was investigated through Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD); sizes, shape and morphology of the synthesized particles were studied by Scanning Electron Microscopy (SEM). The consolidation performance was evaluated by testing the new nanomaterial on degraded ancient bone findings. An increase of the mineral density and of the micro-hardness of the bone were observed. The new consolidation method was also tested to assess possible effects on the palaeogenetic analysis and radiocarbon dating on the treated bones. The consolidation treatment does not introduce any contaminations that could affect radiocarbon dating and has no general detrimental impact on the genetic characterization of the skeletal remains. This consolidation procedure represents a more compatible conservation tool with respect to traditional procedures: it has been shown that the treatment is effective, easily-applicable and compatible with post-consolidation analysis.


Assuntos
Nanopartículas , Nanoestruturas , Osso e Ossos , Durapatita/química , Nanopartículas/química , Difração de Raios X
16.
Acc Chem Res ; 43(6): 751-60, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20387877

RESUMO

The works of art and artifacts that constitute our cultural heritage are subject to deterioration, both from internal and from external factors. Surfaces that interact with the environment are the most prone to aging and decay; accordingly, soiling is a prime factor in the degradation of surfaces and the attendant disfigurement of a piece. Coatings that were originally intended to protect or contribute aesthetically to an artwork should be removed if they begin to have a destructive impact on its appearance or surface chemistry. Since the mid-19th century, organic solvents have been the method of choice for cleaning painted surfaces and removing degraded coatings. Care must be taken to choose a solvent mixture that minimizes swelling of or leaching from the original paint films, which would damage and compromise the physical integrity of all the layers of paint. The use of gels and poultices, first advocated in the 1980s, helps by localizing the solvent and, in some cases, by reducing solvent permeation into underlying paint layers. Unfortunately, it is not always easy to remove gels and their residues from a paint surface. In this Account, we address the removal problem by examining the properties of three classes of innovative gels for use on artwork--rheoreversible gels, magnetic gels, and "peelable" gels. Their rheological properties and efficacies for treating the surfaces of works have been studied, demonstrating uniquely useful characteristics in each class: (1) Rheoreversible gels become free-flowing on application of a chemical or thermal "switch". For art conservation, a chemical trigger is preferred. Stable gels formed by bubbling CO(2) through solutions of polyallylamine or polyethylenimines (thereby producing ammonium carbamates, which act as chain cross-links) can be prepared with a wide range of solvent mixtures. After solubilization of varnish and dirt, addition of a weak acid (mineral or organic) displaces the CO(2), and the resulting free-flowing liquid can be removed gently. (2) Incorporation of magnetic, coated-ferrite nanoparticles into polyacrylamide gels adds functionality to a versatile system comprising oil-in-water microemulsions, aqueous micellar solutions, or xerogels that act as sponges. The ferrite particles allow the use of magnets both to place the gels precisely on a surface and to lift them from it after cleaning. (3) Novel formulations of poly(vinyl alcohol)-borate gels, which accept a range of organic cosolvents, show promise for swelling and dissolving organic coatings. This family of gels can be quite stiff but can be spread. They are non-sticky and have sufficient strength to be removed by peeling or lifting them from a sensitive surface. These three classes of gels are potentially very important soft materials to augment and improve the range of options available for conserving cultural heritage, and their interesting chemical-physical properties open a rich area for future scientific investigation.

17.
Langmuir ; 27(18): 11671-82, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21848256

RESUMO

A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions.

18.
Langmuir ; 27(21): 13226-35, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21749078

RESUMO

The preparation and structural characterization of a family of viscoelastic dispersions of borate cross-linked, 80% hydrolyzed poly(vinyl acetate) (80PVAc) in aqueous-organic liquids are presented. Correlations between mechanical properties (from rheological measurements) and the degree and nature of cross-linking (from (11)B NMR spectroscopy) are reported, and the results are used to assess their potential as low-impact cleaning agents for the surfaces of paintings. Because the dispersions can be prepared at room temperature by simple procedures from readily available materials and can contain up to 50% (w/w) of an organic liquid, they offer important advantages over previously described cleaning agents that are based on fully hydrolyzed PVAc (i.e., poly(vinyl alcohol). The mechanical properties of the various aqueous-organic dispersions, as determined quantitatively by rheological investigations and qualitatively by their ease of removal from a solid surface (i.e., the so-called "peel-off" ability) have been tuned systematically by varying the amount of organic liquid, its structure, and the concentrations of borax and 80PVAc. The (11)B NMR studies demonstrate that the concentration of borate ions actively participating in cross-linking increases significantly with the amount of organic liquid in the mixture. The degree of cross-linking remains constant when the 80PVAc and borax concentrations are varied, as long as their ratios are kept constant. Some of the 80PVAc-borax dispersions have been tested successfully as cleaning agents on the surface of a 16th-17th century oil-on-wood painting by Lodovico Cardi, "Il Cigoli", that was covered by a brown patina and on the surface of a Renaissance wall painting by Vecchietta in Santa Maria della Scala, Siena, Italy, that had a degraded polyacrylate coating from a previous conservation treatment.

19.
J Colloid Interface Sci ; 590: 238-248, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548607

RESUMO

HYPOTHESIS: The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL: The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS: This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.

20.
Beilstein J Org Chem ; 6: 984-91, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21085496

RESUMO

A detailed study of the rheological properties of silicone oil gels, made from a low-molecular-mass organic gelator, a combination of 1-octadecylamine (a latent gelator) and carbon dioxide (an 'activating' molecule), is reported. Information gleaned from the mechanical measurements is used to characterize the gel networks and how they respond to temperature and strain. It is shown, for example, that very precise measurements of the gel-to-sol transitions can be obtained from plots of viscosity versus temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA