RESUMO
Total and polarized radiances from above the ocean surface are measured by a state-of-the-art snapshot hyperspectral imager. A computer-controlled filter wheel is installed in front of the imager allowing for recording of division-of-time Stokes vector images from the ocean surface. This system, to the best of our knowledge, for the first time provided a capability of hyperspectral polarimetric multi-angular measurements of radiances from above the water surface. Several sets of measurements used in the analysis were acquired from ocean platforms and from shipborne observations. Measurements made by the imager are compared with simulations using a vector radiative transfer (VRT) code showing reasonable agreement. Analysis of pixel-to-pixel variability of the total and polarized above-water radiance for the viewing angles of 20°-60° in different wind conditions enable the estimation of uncertainties in measurements of these radiances in the polarized mode for the spectral range of 450-750 nm, thus setting requirements for the quality of polarized measurements. It is shown that there is a noticeable increase of above-water degree of linear polarization (DoLP) as a function of the viewing angle, which is due both to the larger DoLP of the light from the water body and the light reflected from the ocean surface. Results of measurements and VRT simulations are applied for the multi-angular retrieval of the ratio of beam attenuation coefficient (ctot) to absorption coefficient (atot) in addition to the other parameters such as absorption and backscattering coefficients retrieved from traditional unpolarized methods.
RESUMO
A novel snapshot hyperspectral imager is introduced for ocean color (OC) applications and its capabilities are demonstrated. The instrument provides hyperspectral radiance images with a wide field-of-view (FOV) and short exposure time, which is valuable for the direct characterization of the wind-roughened surface in various illumination conditions and wind speeds. Uncertainties in the total(Lt), sky (Ls) and derived water-leaving (Lw)radiances at viewing angles of 20-60° are determined as a function of wind speed together with associated correlation coefficients and variances of the sea surface reflectance coefficient ρ. Estimated Lw uncertainties can partially explain the inaccuracy of satellite retrievals in the blue bands in the coastal waters. It is shown that in above-water measurements in no-glint conditions with viewing and azimuth angles of 40° and 90°, respectively, for both Lt(λ) and Ls(λ) the impact of FOV is minimal at least up to measured W = 5.7 m/s for full-angle FOV of 4° and larger. Implications of uncertainties for the derivation of water leaving radiance in above-water ship-borne and AERONET-OC measurements are discussed.
RESUMO
In a downlink scenario, the performance of laser satellite communications is limited due to atmospheric turbulence, which causes fluctuations in the intensity and the phase of the received signal, leading to an increase in bit error probability. In principle, a single-aperture phase-compensated receiver, based on adaptive optics, can overcome atmospheric limitations by adaptive tracking and correction of atmospherically induced aberrations. However, under strong turbulence situations, the effectiveness of traditional adaptive optics systems is severely compromised. We have developed an alternative intensity-based technique that corrects the wavefront by iteratively updating the phases of individual focal-plane speckles, which maximizes the power coupled into a single-mode fiber. Here, we present the proof of concept for this method. We show how this technique offers around 4 dB power gain with fewer than 60 power measurements under strong turbulence conditions. It delivers a good performance in different turbulent regimes, and it shows robustness against severe deterioration of the signal-to-noise ratio.
RESUMO
Wavefront distortions of optical waves propagating through the turbulent atmosphere are responsible for phase and amplitude fluctuations, causing random fading in the signal coupled into single-mode optical fibers. Wavefront aberrations can be confronted, in principle, with adaptive optics technology that compensates the incoming optical signal by the phase conjugation principle and mitigates the likeliness of fading. However, real-time adaptive optics requires phase wavefront measurements, which are generally difficult under typical propagation conditions for communication scenarios. As an alternative to the conventional adaptive optics approach, here, we discuss a novel phase-retrieval technique that indirectly determines the unknown phase wavefront from focal-plane intensity measurements. The adaptation approach is based on sequential optimization of the speckle pattern in the focal plane and works by iteratively updating the phases of individual speckles to maximize the received power. We found in our analysis that this technique can compensate the distorted phasefront and increase the signal coupled with a significant reduction in the required number of iterations, resulting in a loop bandwidth utilization well within the capacity of commercially available deformable mirrors.
RESUMO
The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.
RESUMO
Comprehensive polarimetric closure is demonstrated using observations from two in-situ polarimeters and Vector Radiative Transfer (VRT) modeling. During the Ship-Aircraft Bio-Optical Research (SABOR) campaign, the novel CCNY HyperSAS-POL polarimeter was mounted on the bow of the R/V Endeavor and acquired hyperspectral measurements from just above the surface of the ocean, while the NASA GISS Research Scanning Polarimeter was deployed onboard the NASA LaRC's King Air UC-12B aircraft. State-of-the-art, ancillary measurements were used to characterize the atmospheric and marine contributions in the VRT model, including those of the High Spectral Resolution Lidar (HSRL), the AErosol RObotic NETwork for Ocean Color (AERONET-OC), a profiling WETLabs ac-9 spectrometer and the Multi-spectral Volume Scattering Meter (MVSM). An open-ocean and a coastal scene are analyzed, both affected by complex aerosol conditions. In each of the two cases, it is found that the model is able to accurately reproduce the Stokes components measured simultaneously by each polarimeter at different geometries and viewing altitudes. These results are mostly encouraging, considering the different deployment strategies of RSP and HyperSAS-POL, which imply very different sensitivities to the atmospheric and ocean contributions, and open new opportunities in above-water polarimetric measurements. Furthermore, the signal originating from each scene was propagated to the top of the atmosphere to explore the sensitivity of polarimetric spaceborne observations to changes in the water type. As expected, adding polarization as a measurement capability benefits the detection of such changes, reinforcing the merits of the full-Stokes treatment in modeling the impact of atmospheric and oceanic constituents on remote sensing observations.
RESUMO
Polarized light fields contain more information than simple irradiance and such capabilities provide an advanced tool for underwater imaging. The concept of the beam spread function (BSF) for analysis of scalar underwater imaging was extended to a polarized BSF which considers polarization. The following studies of the polarized BSF in an underwater environment through Monte Carlo simulations and experiments led to a simplified underwater polarimetric imaging model. With the knowledge acquired in the analysis of the polarimetric imaging formation process of a manmade underwater target with known polarization properties, a method to extract the inherent optical properties of the water and to retrieve polarization characteristics of the target was explored. The proposed method for retrieval of underwater target polarization characteristics should contribute to future efforts to reveal the underlying mechanism of polarization camouflage possessed by marine animals and finally to generalize guidelines for creating engineered surfaces capable of similar polarization camouflage abilities in an underwater environment.
Assuntos
Meio Ambiente , Imageamento Tridimensional , Água , Simulação por Computador , Luz , Modelos Teóricos , Método de Monte Carlo , Nefelometria e Turbidimetria , Análise Numérica Assistida por Computador , Fotografação/instrumentaçãoRESUMO
Despite appearing featureless to our eyes, the open ocean is a highly variable environment for polarization-sensitive viewers. Dynamic visual backgrounds coupled with predator encounters from all possible directions make this habitat one of the most challenging for camouflage. We tested open-ocean crypsis in nature by collecting more than 1500 videopolarimetry measurements from live fish from distinct habitats under a variety of viewing conditions. Open-ocean fish species exhibited camouflage that was superior to that of both nearshore fish and mirrorlike surfaces, with significantly higher crypsis at angles associated with predator detection and pursuit. Histological measurements revealed that specific arrangements of reflective guanine platelets in the fish's skin produce angle-dependent polarization modifications for polarocrypsis in the open ocean, suggesting a mechanism for natural selection to shape reflectance properties in this complex environment.
Assuntos
Mimetismo Biológico , Peixes/fisiologia , Seleção Genética , Animais , Plaquetas/citologia , Ecossistema , Oceanos e Mares , Comportamento Predatório , Pele/anatomia & histologia , Pele/irrigação sanguínea , Visão OcularRESUMO
Entre 2003 y 2005 un 40-70% de las mujeres argentinas se hicieron un PAP según el Ministerio de Salud. El presente trabajo se realizó en el contexto de la rotación Medicina Familiar. El objetivo del trabajo fue estimar la cobertura de PAP en dos barrios de Bahía Blanca e identificar las barreras que limitan su práctica en atención primaria. Se utilizo un diseño de tipo transversal cuali-cuantitativo. Se realizo una encuesta estructurada a 224 mujeres sexualmente activas de entre 15 y 65 años, seleccionadas por muestreo aleatorio por conglomerados y una entrevista semiestructurada al personal de ambas unidades sanitarias. El 49,1% de las mujeres se realiza un PAP anualmente. Existe asociación entre: el tiempo desde el último PAP y la edad de la mujer (p<0.001), edad y conocimiento sobre utilidad del PAP (p<0.001) y conocimiento y cobertura (p<0.001). Del análisis cualitativo se desprende que la sobrecarga del sistema de salud repercute negativamente en la realización del PAP. La principal barrera identificada es la falta de información.
According to the Ministry of Health, between 2003 and 200540-70% of Argentine women had a PAP smear done. The present researchwas conducted in the context of a Family Medicine rotation. The objectivewas to estimate the PAP screening coverage in two neighborhoods of BahiaBlanca and to identify the barriers that limits its practice in primary care.The study design chosen was a cross-sectional quali-quantitative study. Datawas collect by structured survey of 224 sexually active women between15 and 65 years, random cluster sampling, and semistructured interviewof both primary health care centers staff. 49.1% of women have their PAPsmears performed annually. Theres an association between: the time fromthe last PAP smear and the womans age (p <0.001), age and knowledgeof PAP smears utility (p <0.001) and knowledge and coverage (p <0.001).Qualitative analysis shows that overload in the health system negativelyimpacts the performing of PAP smears. The main identi&ed barrier was lackof information.