Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107932, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39476963

RESUMO

Sperm capacitation is a complex process that takes place in the female reproductive tract and empowers mammalian sperm with the competence to fertilize an egg. It consists of an intricate cascade of events that can be mimicked in vitro through incubation in a medium containing essential components such as bicarbonate, albumin, Ca2+ and energy substrates, among others. Genetic and pharmacological studies have underscored the unique significance of the K+ channel SLO3 in membrane potential hyperpolarization, as evidenced by the infertility of mice lacking its expression. Notably, two key molecular events, sperm hyperpolarization and intracellular alkalinization, are central to the capacitation process. SLO3 is activated by alkalinization. However, the molecular mechanisms responsible for intracellular alkalization and activation of SLO3 are not completely understood. In this study, we examined the impact of Na+/H+ exchangers on mouse sperm membrane hyperpolarization during capacitation. Pharmacological inhibition of the NHE1 exchanger blocked membrane hyperpolarization. A similar effect was observed in sperm deficient of the Ca2+ channel CatSper, because of NHE1 not being activated by Ca2+. In addition, the sperm specific NHE (sNHE) KO, did not show membrane hyperpolarization upon capacitation or induction with cAMP analogues. Our results show that sNHE is dually modulated by cAMP and membrane hyperpolarization probably through its cyclic nucleotide binding domain and the voltage-sensor motif respectively. Together, sNHE and NHE1provide the alkalinization need for SLO3 activation during capacitation.

2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496535

RESUMO

Sperm capacitation, crucial for fertilization, occurs in the female reproductive tract and can be replicated in vitro using a medium rich in bicarbonate, calcium, and albumin. These components trigger the cAMP-PKA signaling cascade, proposed to promote hyperpolarization of the mouse sperm plasma membrane through activation of SLO3 K+ channel. Hyperpolarization is a hallmark of capacitation: proper membrane hyperpolarization renders higher in vitro fertilizing ability, while Slo3 KO mice are infertile. However, the precise regulation of SLO3 opening remains elusive. Our study challenges the involvement of PKA in this event and reveals the role of Na+/H+ exchangers. During capacitation, calcium increase through CatSper channels activates NHE1, while cAMP directly stimulates the sperm-specific NHE, collectively promoting the alkalinization threshold needed for SLO3 opening. Hyperpolarization then feeds back Na+/H+ activity. Our work is supported by pharmacology, and a plethora of KO mouse models, and proposes a novel pathway leading to hyperpolarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA