Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycoconj J ; 40(6): 655-668, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100017

RESUMO

Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.


Assuntos
Gangliosídeo G(M1) , Galactose , Gangliosídeo G(M1)/química , Ácido N-Acetilneuramínico , Oligossacarídeos/química
2.
Biochem J ; 477(17): 3401-3415, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32869836

RESUMO

Cardiac fibrosis is a key physiological response to cardiac tissue injury to protect the heart from wall rupture. However, its progression increases heart stiffness, eventually causing a decrease in heart contractility. Unfortunately, to date, no efficient antifibrotic therapies are available to the clinic. This is primarily due to the complexity of the process, which involves several cell types and signaling pathways. For instance, the transforming growth factor beta (TGF-ß) signaling pathway has been recognized to be vital for myofibroblasts activation and fibrosis progression. In this context, complex sphingolipids, such as ganglioside GM3, have been shown to be directly involved in TGF-ß receptor 1 (TGF-R1) activation. In this work, we report that an induced up-regulation of sialidase Neu3, a glycohydrolytic enzyme involved in ganglioside cell homeostasis, can significantly reduce cardiac fibrosis in primary cultures of human cardiac fibroblasts by inhibiting the TGF-ß signaling pathway, ultimately decreasing collagen I deposition. These results support the notion that modulating ganglioside GM3 cell content could represent a novel therapeutic approach for cardiac fibrosis, warranting for further investigations.


Assuntos
Fibroblastos/metabolismo , Gangliosídeo G(M3)/metabolismo , Regulação Enzimológica da Expressão Gênica , Miocárdio/metabolismo , Neuraminidase/biossíntese , Regulação para Cima , Fibroblastos/patologia , Fibrose , Humanos , Miocárdio/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
3.
Adv Exp Med Biol ; 1325: 61-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495530

RESUMO

Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.


Assuntos
Glicoesfingolipídeos , Lipídeos , Membrana Celular , Transdução de Sinais
4.
Glycoconj J ; 37(5): 623-633, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666337

RESUMO

Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.


Assuntos
Diferenciação Celular/genética , Fibrose Cística/genética , Hidrolases/genética , Esfingolipídeos/genética , Brônquios/enzimologia , Membrana Celular/enzimologia , Membrana Celular/genética , Ceramidas/genética , Fibrose Cística/enzimologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Glucosilceramidas/genética , Humanos , Hidrolases/química , Cultura Primária de Células , Esfingolipídeos/metabolismo
5.
Adv Neurobiol ; 29: 305-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255680

RESUMO

Gangliosides are a large group of complex lipids found predominantly in the outer layer of the plasma membrane of cells, particularly abundant in nerve endings. Their half-life in the nervous system is short, and their membrane composition and content are strictly connected to their metabolism. The neobiosynthesis of gangliosides starts in the endoplasmic reticulum and is completed in the Golgi apparatus, whereas catabolism occurs primarily in lysosomes. However, the final content of gangliosides in the plasma membrane is defined by other cellular processes.This chapter will discuss structural changes in the oligosaccharide chains of gangliosides, induced by the activity of plasma membrane-associated glycohydrolases and glycosyltransferases. Some of the plasma membrane enzymes originate from fusion processes between intracellular fractions and the plasma membrane, while, others display a different structure. Several of these plasma membrane enzymes have been characterized and some of them seem to have a specific role in the nervous system.


Assuntos
Gangliosídeos , Glicosiltransferases , Humanos , Gangliosídeos/química , Gangliosídeos/metabolismo , Membrana Celular/metabolismo , Glicosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Sistema Nervoso
6.
FEBS Open Bio ; 13(12): 2324-2341, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37885330

RESUMO

Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid-containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1-OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate-induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1-OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Gangliosídeo G(M1)/farmacologia , Gangliosídeo G(M1)/metabolismo , Ácido Glutâmico , Doenças Neurodegenerativas/metabolismo , Superóxido Dismutase/metabolismo , Neurônios Motores/metabolismo
7.
Biomedicines ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37238977

RESUMO

Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3ß pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37330108

RESUMO

Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Gangliosídeo G(M1)/farmacologia , Gangliosídeo G(M1)/química , Oligossacarídeos/farmacologia
9.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140170

RESUMO

In recent years, the availability of induced pluripotent stem cell-based neuronal models has opened new perspectives on the study and therapy of neurological diseases such as Parkinson's disease. In particular, P. Zhang set up a protocol to efficiently generate dopaminergic neurons from induced pluripotent stem cells. Although the differentiation process of these cells has been widely investigated, there is scant information related to the variation in metabolic features during the differentiation process of pluripotent stem cells to mature dopaminergic neurons. For this reason, we analysed the metabolic profile of induced pluripotent stem cells, neuronal precursors and mature neurons by liquid chromatography-tandem mass spectrometry. We found that induced pluripotent stem cells primarily rely on fatty acid beta-oxidation as a fuel source. Upon progression to neuronal progenitors, it was observed that cells began to shut down fatty acid ß-oxidation and preferentially catabolised glucose, which is the principal source of energy in fully differentiated neurons. Interestingly, in neuronal precursors, we observed an increase in amino acids that are likely the result of increased uptake or synthesis, while in mature dopaminergic neurons, we also observed an augmented content of those amino acids needed for dopamine synthesis. In summary, our study highlights a metabolic rewiring occurring during the differentiation stages of dopaminergic neurons.

10.
J Mol Neurosci ; 72(7): 1482-1499, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35727525

RESUMO

Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons. In SM-loaded NPA fibroblasts, we found the blockage of the autophagy flux and the impairment of the mitochondrial compartment paralleled by the altered transcription of several genes, mainly belonging to the electron transport chain machinery and to the cholesterol biosynthesis pathway. In addition, SM loading induces the nuclear translocation of the transcription factor EB that promotes the lysosomal biogenesis and exocytosis. Interestingly, we obtained similar biochemical findings in the brain of the NPA mouse model lacking ASM (ASMKO mouse) at the neurodegenerative stage. Our work provides a new in vitro model to study NPA etiopathology and suggests the existence of a pathogenic lysosome-plasma membrane axis that with an impairment in the mitochondrial activity is responsible for the cell death.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Animais , Apoptose , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia
11.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954187

RESUMO

ß-glucocerebrosidase is a lysosomal hydrolase involved in the catabolism of the sphingolipid glucosylceramide. Biallelic loss of function mutations in this enzyme are responsible for the onset of Gaucher disease, while monoallelic ß-glucocerebrosidase mutations represent the first genetic risk factor for Parkinson's disease. Despite this evidence, the molecular mechanism linking the impairment in ß-glucocerebrosidase activity with the onset of neurodegeneration in still unknown. In this frame, we developed two in vitro neuronal models of ß-glucocerebrosidase deficiency, represented by mouse cerebellar granule neurons and human-induced pluripotent stem cells-derived dopaminergic neurons treated with the specific ß-glucocerebrosidase inhibitor conduritol B epoxide. Neurons deficient for ß-glucocerebrosidase activity showed a lysosomal accumulation of glucosylceramide and the onset of neuronal damage. Moreover, we found that neurons react to the lysosomal impairment by the induction of their biogenesis and exocytosis. This latter event was responsible for glucosylceramide accumulation also at the plasma membrane level, with an alteration in lipid and protein composition of specific signaling microdomains. Collectively, our data suggest that ß-glucocerebrosidase loss of function impairs the lysosomal compartment, establishing a lysosome-plasma membrane axis responsible for modifications in the plasma membrane architecture and possible alterations of intracellular signaling pathways, leading to neuronal damage.


Assuntos
Doença de Gaucher , Glucosilceramidase , Animais , Membrana Celular/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidas , Humanos , Lisossomos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA